• 제목/요약/키워드: STM(Scanning Tunneling Microscopy)

검색결과 114건 처리시간 0.032초

Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

  • Kang, Hun-Gu;Kim, You-Young;Park, Tae-Sun;Park, Joon-B.;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1253-1257
    • /
    • 2011
  • The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at $50^{\circ}C$ formed well-ordered SAMs with a $(2{\surd}3{\times}{\surd}5)R41^{\circ}$ packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments ($C_5H_9^+$, m/e = 69) generated via C-S bond cleavage and the parent molecular species ($C_5H_9SH^+$, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

Coexistence of Closely Packed c(4 × 2) and Striped Phases in Self-Assembled Monolayers of Decylthiocyanates on Au(111)

  • Choi, Young-Sik;Kang, Hun-Gu;Choi, In-Chang;Lee, Nam-Suk;Cho, Jun-Hyung;Jang, Chang-Hyun;Noh, Jaeg-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.901-904
    • /
    • 2010
  • Decylthiocyanate (DTC) self-assembled monolayers (SAMs) on Au(111) were prepared by solution and vapor phase deposition methods at $50^{\circ}C$ for 24 h. The formation and surface structure of DTC SAMs were examined using scanning tunneling microscopy (STM). STM imaging revealed that DTC SAMs formed in 1 mM ethanol solution at $50^{\circ}C$ were composed of small ordered domains with lateral dimensions of a few nanometers and disordered phases, whereas DTC SAMs formed in the vapor phase at $50^{\circ}C$ contained two ordered phases: a closely packed c($4{\times}2$) superlattice and a striped phase with an interstripe spacing of 2.6 - 2.8 nm. It was also found that the ordered domain and vacancy island formation for DTC SAMs on Au(111) differs significantly from that of decanethiol SAMs, suggesting that adsorption mechanism is different from each other. From this study, it was confirmed that DTC SAMs with a high degree of structural order can be obtained by vapor phase deposition.

A Study on the Negative Differential Resistance in Dipyridinium Self-Assembled Monolayers Using STM

  • Lee Nam-Suk;Shin Hoon-Kyu;Kwon Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.111-114
    • /
    • 2005
  • Organic monolayers were fabricated onto Au(l l l) substrate by self-assembly method using dipyridinium. Also, organic single molecule in the organic monolayers was selected to measure the current-voltage (I-V) curves by using the ultrahigh vacuum scanning tunneling microscopy (UHV-STM). The organic molecule used in the experiment was dipyridinium dithioacetate, which contains thiol functional group and can be self-assembled easily onto Au(l l l) substrate. The concentration of dipyridinium dithioacetate for self-assembly procedure was I [mM/L]. To confirm the formation of self-assembled mono layers (SAMs), the differences of thickness of the self-assembled organic monolayers were observed by using an ellipsometer, and the morphology and I-V curves of the SAMs were investigated by using UHV-STM. The applied voltages were from -2 [V] to +2 [V], temperature was 300 [K]. The vacuum for measuring current of the organic single molecule was 6 $\times$ 10$^{-8}$ [Torr]. As a result, properties of the negative differential resistance (NDR) in constant voltage were found.

Local Photoswitching Effects of Cytochrome c/Viologen/GFP Hetero-Thin Film

  • 유창준;최정우;박세정;남윤석;오병근;이원홍
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.823-826
    • /
    • 2001
  • In the initial process of photosynthesis, a biological electron transfer system, photoelectric conversion occurs and then long-range electron transfer takes place very efficiently in one direction through the biomolecules. The metal/insulator/metal structured device consisting of GFP, viologen, cytochrome c hetero-thin film was presented based on the biomimesis. GFP, viologen, and cytochrome c was used as an electron sensitizer, a mediator, and an electron acceptor. Cytochrome c molecules and viologen molecules were deposited by Langmuir-Blodgett (LB) technique, and GFP molecules were adsorbed by self-assembly method (SAM). Surface morphology of hetero-thin film was analyzed by scanning tunneling microscopy (STM). Local photoswitching effects of a proposed photodiode were verified by current-voltage measurements using hybrid STM/I-V measurement system.

  • PDF

Control the Au(111) Work Function by Substituted Aromatic Thiol Self-Assembled Monolayers

  • 강훈구;;;;노재근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.243-243
    • /
    • 2012
  • Self-assembled monolayers (SAMs) prepared by aromatic thiols on gold surfaces have much larger potential for electronic device applications due to their electronic properties. In this study, the formation and structures of SAMs prepared by benzenethiol (BT), toluenethiol (TT), 2-fluorobenzenethiol (2-FBT), 3-fluorobenzenethiol (3-FBT), 4-fluorobenzenethiol (4-FBT), 4-chlorobenzenethiol (4-CBT), 4-fluorobenzenemethanethiol (4-FBMT), and 4-chlorobenzenemethanethiol (4-CBMT) on Au(111) were examined using scanning tunneling microscopy (STM) and Kelvin probe (KP) to explore the structure and electronic interface properties of eight differently substituted aromatic thiol SAMs on Au(111). And these values are compared with gas phase dipole moments computed by quantum chemical calculations for individual thiol molecules. It was revealed that all eight thiol-molecules form uniform SAMs on Au(111) at $75^{\circ}C$ compared to lower solution temperature by STM observation. The work function change obtained in the KP measurements and calculated molecular dipole moments have the linear relationship while the 4-FBMT and 4-CBMT deviate from this tendency.

  • PDF

Characterization of functionalized silicon surfaces and graphenes using synchrotron radiation PES

  • 황찬국
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.40-40
    • /
    • 2010
  • Employing synchrotron radiation based photoemission spectroscopy (PES) and scanning tunneling microscopy (STM), our group have investigated Si surfaces, various graphenes and molecular nanolayers. In this talk, I introduce recent results on the surface related systems. All experiments have been performed at the surface science beamlines, 3A2 and 7B1, in Pohang Accelerator Laboratory, where high resolution PES (HRPES) and angle resolved PES (ARPES) are available. Metals or molecules are adsorbed and sometimes extreme ultraviolet is irradiated onto surfaces to give them special functions. I show several examples for surface functionalzation and how to characterize solid surface using the analysis techniques. In particular, lots of ARPES and STM data are provided from graphenes, a strong candidate for replacing Si and conducting oxide currently used in many electronic and optical devices.

  • PDF

Scanning Tunneling Microscopy (STM)/Atomic Force Microscopy(AFM) Studies of Silicon Surfaces Treated in Alkaline Solutions of Interest to Semiconductor Processing

  • Park, Jin-Goo
    • 한국표면공학회지
    • /
    • 제28권1호
    • /
    • pp.55-63
    • /
    • 1995
  • Alkaline solutions such as $NH_4$OH, choline and TMAH (($CH_3$)$_4$NOH) have been introduced in semiconductor wet processing of silicon wafers to control ionic and particulate impurities following etching in acidic solutions. These chemicals usually mixed with hydrogen peroxide and/or surfactants to control the etch rate of silicon. The highest etch rate was observed in $NH_4$OH solutions at a pH in alkaline solutions. It indicates that the etch rate depends on the content of $OH^{-}$ as well as cations of alkaline solutions. STM/AFM techniques were used to characterize the effect of alkaline solutions on silicon surface roughness. In SC1 (mixture of $NH_4$OH : $H_2$$O_2$ : $H_2$O) solutions, the reduction of the ammonium hydroxide proportion from 1 to 0.1 decreased the surface roughness ($R_{rms}$) from 6.4 to $0.8\AA$. The addition of $H_2$$O_2$ and surfactants to choline and TMAH reduced the values of $R_{p-v}$ and $R_{rms}$ significantly. $H_2$$_O2$ and surfactants added in alkaline solutions passivate bare silicon surfaces by the oxidation and adsorption, respectively. The passivation of surfaces in alkaline solutions resulted in lower etch rate of silicon thereby provided smoother surfaces.s.ces.s.

  • PDF

Binary Compound Formation upon Copper Dissolution: STM and SXPS Results

  • Hai, N.T.M.;Huemann, S.;Hunger, R.;Jaegermann, W.;Broekmann, P.;Wandelt, K.
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.198-205
    • /
    • 2007
  • The initial stages of electrochemical oxidative CuI film formation on Cu(111), as studied by means of Cyclic Voltammetry (CV), in-situ Scanning Tunneling Microscopy (STM) and ex-situ Synchrotron X-ray Photoemission Spectroscopy (SXPS), indicate a significant acceleration of copper oxidation in the presence of iodide anions in the electrolyte. A surface confined supersaturation with mobile CuI monomers first leads to the formation of a 2D-CuI film via nucleation and growth of a Cu/I-bilayer on-top of a pre-adsorbed iodide monolayer. Structurally, this 2D-CuI film is closely related to the (111) plane of crystalline CuI (zinc blende type). Interestingly, this film causes no significant passivation of the copper surface. In an advanced stage of copper dissolution a transition from the 2D- to a 3D-CuI growth mode can be observed.

Spectroscopic Studies on Electroless Deposition of Copper on Hydrogen-Terminated Si(111) Surface in NH4F Solution Containing Cu(II) Ions

  • Lee, In-Churl;Bae, Sang-Eun;Song, Moon-Bong;Lee, Jong-Soon;Paek, Se-Hwan;J.Lee, Chi-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권2호
    • /
    • pp.167-171
    • /
    • 2004
  • The electroless deposition of copper on the hydrogen-terminated Si(111) surface was investigated by means of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, scanning tunneling microscopy (STM), and energy-dispersive spectroscopy (EDS). The hydrogen-terminated Si(111) surface prepared was stable under air atmosphere for a day or more. It was found from ATR-FTIR that two bands centered at 2000 and 2260 $cm^{-1}$ appeared after the H-Si(111) surface was immersed in 40% $NH_4F$ solution containing 10 mM $Cu^{2+}$. On the other hand, STM image included the copper islands with a height of 5 nm and a diameter of 10-20 nm. The EDS data displayed the presence of copper, silicon and oxygen species. The results were rationalized in terms of the redox reaction of surface Si atoms and $Cu^{2+}$ ions in solutions, which are changed into $Si(OH)_x(F)_y$ containing $SiF_6^{2-}$ ions and neutral copper islands.

Influence of Thiol Molecular Backbone Structure on the Formation and Reductive Desorption of Self-Assembled Aromatic and Alicyclic Thiol Monolayers on Au(111) Surface

  • Kang, Hungu;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1383-1387
    • /
    • 2013
  • The surface structure and electrochemical behavior of self-assembled monolayers (SAMs) prepared from benzenethiol (BT), cyclohexanethiol (CHT), and cyclopentanethiol (CPT) on Au(111) surface were examined by scanning tunneling microscopy (STM) and cyclic voltammetry (CV) to understand the influence of thiol molecular backbone structure on the formation and reductive desorption behavior of SAMs. STM imaging showed that BT and CPT SAMs on Au(111) surface formed at room temperature were mainly composed of disordered domains, whereas CHT SAMs were composed of well-ordered domains with three orientations. From these STM results, we suggest that molecule-substrate interaction is a key parameter for determining the structural order and disorder of simple aromatic and alicyclic thiol SAMs on Au(111). In addition, the reductive desorption peak potential for BT SAMs with aromatic rings was observed at a less negative potential of -566 mV compared to CHT SAMs (-779 mV) or CPT SAMs (-775 mV) with aliphatic cyclic rings. This reductive desorption behavior for BT SAMs is due to the presence of p-orbitals on the aromatic rings, which promote facile electron transfer from the Au electrode to BT as compared to CHT and CPT. We also confirmed that the reductive desorption behavior for simple alicyclic thiol SAMs such as CHT and CPT SAMs on Au electrodes was not significantly influenced by the degree of structural order.