• 제목/요약/키워드: STM(Scanning Tunneling Microscopy)

검색결과 114건 처리시간 0.025초

STM Study of Nb Clusters on Ag(110)

  • 윤홍식;이준희;양경득;여인환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.173-173
    • /
    • 1999
  • The initial growth mode of Nb on Ag(110) in sub-monolayer region is studied using Scanning Tunneling microscopy. E-beam evaporated Nb is deposited onto the substrate at RT, and STM measurements are carried out at RT and 78K. With Nb being immiscible in bulk Ag, 3D islands formation begins at early stage and no particular ordered structure is found. At very low coverages, however, many interesting phenomena are observed in association with Nb clusters. Small Nb clusters as deposited displays very strong size dependence against atom-manipulation by the STM tip. In addition, the apparent corrugation of clusters below the critical size exhibits dramatic dependence on the imaging bias, disappearing completely over a wide range of the bias. Possible physical mechanism responsible for such behavior will be discussed.

  • PDF

Symmetry and depth-dependent orders of subsurface defects in Mn-doped Sb(111) studied by using STM

  • Cho, Doo-Hee;Kim, Min-Seong;Lyo, In-Whan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.57-57
    • /
    • 2010
  • Sb(111) is a spin textured surface due to the strong spin-orbit coupling, often viewed as a proto-type topological insulator. We used scanning tunneling microscopy (STM) to characterize various Mn-induced subsurface defects existing at the surface of Mn-doped Sb at 50 K. Our STM images show that every defect exhibits 3-fold symmetry with a single rotational orientation and can be categorized by their shapes and sizes. We found more than 10 types of subsurface defects with distinctive orders, which allows the resolution of the vertical positions of the magnetic dopants lying more than 10 layers down from the surface. We will discuss about our findings in comparison with theoretical results.

  • PDF

Initial Growth of Nb on Cu(100) studied by STM and Density Functional Theory

  • Lee, Joon-Hee;Ryang, Kyung-Deuk;Son, Chul-Woo;Lyo, In-Whon;Kang, Jin-Ho;Kang, Myung-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.159-159
    • /
    • 2000
  • Initial growth mode of Nb on Cu(100) is studied by scanning tunneling microscopy (STM) and density functional theory. Nb/Cu is immiscible at room temperature, but isolated Nb atoms are expected to be incorporated up to the second layer by DFT. STM shows that Nb atoms mix with Cu atoms in the first layer at room temperature and diffuse into the second layer upon annealing. In the second layer, Nb/induced features are preferentially found at step edges and appear as bright dots surrounded by dark rings. Details of comparison between experiment and theory will be discussed.

  • PDF

Ag(100) 기판위에 증착된 Nb Cluster에 관한 STM연구

  • 윤홍식;유미애;한권환;이준희;양경득;여인환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.140-140
    • /
    • 2000
  • The initial growth mode of Nb on Ag(11) in sub-monolayer regime and the influence of subsequent 520K annealing are studied using UHV Scanning Tunneling Microscopy. E-beam evaporated Nb is deposited onto the substrate at RT, and STM measurements are carried out at RT and 78 K. With Nb being immiscible in bulk Ag, 3D islands formation begins at early stage and no particular ordered structure is found. After annealing to 520K, most of islands are disappeared from terrace. There exist 2 possibilities. : (1) Diffusion of Nb into the 2nd or 3rd layer of Ag substrate or (2) agglomeration of Nb on Ag at higher temperature. A model will be given to explain the evidence. In addition, we investigated the change of STM image according to bias voltage depending on island size. Possible physical mechanism responsible for such behavior together with interaction between Nb islands and reactive gases will be also discussed.

  • PDF

STM Study of CO and NO on Pt(001)

  • M.-B. Song;K. Momoi;Lee, C.-W.;M. Ito
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권7호
    • /
    • pp.705-708
    • /
    • 2000
  • Adsorption of CO and NO Moleculcs on a Pt(OO1)-hex R0.7° surface at 90 K is investigated by scanning tunneling microscopy (STM) in ultra-high vacuum environments. At an initial stage of adsorption, both molecules are preferentially adsorbed on th e Iess coordinated Pt atoms of the surface with hexagonal structure, which act as active sites. Domains of the adsorbates grow parallel to the stripe structure of the reconstructed surface because of Iower migration energy in this direction. The extra Pt atoms produced from adsorbate-induced restructuring give rise to anisotropic islands on the ( 1 x 1 ) surface. Each of the adsorbed NO molecules at low coveragcs is atomicalIy resolved during STM observation. However, the spots of the adsorbed CO are invisible.Such a behavior is probably explained in terms of different interactions between the adsorbates.

Electronic Structures of Graphene Intercalated by Oxygen on Ru(0001): Scanning Tunneling Spectroscopy Study

  • Jang, Won-Jun;Jeon, Jeung-Hum;Yoon, Jong-Keon;Kahng, Se-Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.114-114
    • /
    • 2011
  • Graphene is the hottest topic in condensed-matter physics due to its unusual electronic structures such as Dirac cones and massless linear dispersions. Graphene can be epitaxially grown on various metal surfaces with chemical vapor deposition (CVD) processes. Such epitaxial graphene shows modified electronic structures caused by substrates. In the method for removal of the effect of substrate, there are bi, tri-layer graphene, gold intercalation, and oxygen intercalation. Here, We will present the changes of geometric and electronic structure of graphene grown on Ru(0001) by oxygen intercalation between graphene and Ru(0001). Using Scanning tunneling microscopy (STM) and spectroscopy (STS), we observed the aspect that the band gap features near the fermi level of graphene on Ru(0001) system is shifted and narrow. Based on the observed results, two effects by intercalated oxygen were considered.

  • PDF

Uniform Ag Thin Film Growth on an Sb-terminated Si(111) Surface

  • Park, Kang-Ho;Ha, Jeong-Sook;Lee, El-Hang
    • ETRI Journal
    • /
    • 제19권2호
    • /
    • pp.71-81
    • /
    • 1997
  • We report on the room-temperature-growth of highly uniform and ultrathin Ag films on Sb-terminated Si(111) surfaces, as evidenced from a scanning tunneling microscopy (STM) study in an UHV system. With predeposition of one monolayer (ML) of Sb, uniform growth of Ag islands was observed at room temperature. The Sb layer suppresses the surface diffusion of Ag atoms on Si surface and increases the Ag island density, and then the increased island density is believed to cause coalescence of Ag islands before the beginning of multilayer growth in higher coverages, resulting in the growth of atomically flat and uniform islands on the Sb surfactant layer.

  • PDF

Self-Assembled Monolayers of Dioctyl Diselenides on Au(111)

  • Choi, Jung-Seok;Lee, Yoon-Jung;Kang, Hun-Gu;Han, Jin-Wook;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권6호
    • /
    • pp.1229-1232
    • /
    • 2008
  • The surface structure, electrochemical behavior, and wetting property of self-assembled monolayers (SAMs) formed by dioctyl diselenide (DODSe) on Au(111) were investigated by scanning tunneling microscopy (STM), cyclic voltammetry (CV), and contact angle measurements. In contrast to the formation of well-ordered SAMs by octanethiol on Au(111), the SAMs formed by DODSe have a disordered phase and many unusual vacancy islands (VIs). In addition, the formation of DODSe SAMs is largely influenced by the solution concentration used. DODSe SAMs formed in 5 $\mu$ M and 50 $\mu$ M solutions have two mixed domains consisting of missing-row ordered phases and disordered phases, while DODSe SAMs formed in 1 mM and 5 mM solutions have only disordered phases with an abnormally high VI fraction of 22-24%. We also found that the wetting property and electrochemical behavior of DODSe SAMs on Au(111) are markedly influenced by the formation of ordered SAMs and the density of VIs.

Use of Local Electrochemical Methods (SECM, EC-STM) and AFM to Differentiate Microstructural Effects (EBSD) on Very Pure Copper

  • Martinez-Lombardia, Esther;Lapeire, Linsey;Maurice, Vincent;De Graeve, Iris;Klein, Lorena;Marcus, Philippe;Verbeken, Kim;Kestens, Leo;Gonzalez-Garcia, Yaiza;Mol, Arjan;Terryn, Herman
    • Corrosion Science and Technology
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2017
  • When aiming for an increased and more sustainable use of metals a thorough knowledge of the corrosion phenomenon as function of the local metal microstructure is of crucial importance. In this work, we summarize the information presented in our previous publications[1-3] and present an overview of the different local (electrochemical) techniques that have been proven to be effective in studying the relation between different microstructural variables and their different electrochemical behavior. Atomic force microscopy (AFM)[1], scanning electrochemical microscopy (SECM)[2], and electrochemical scanning tunneling microscopy (EC-STM)[3] were used in combination with electron backscatter diffraction (EBSD). Consequently, correlations could be identified between the grain orientation and grain boundary characteristics, on the one hand, and the electrochemical behavior on the other hand. The grain orientation itself has an influence on the corrosion, and the orientation of the neighboring grains also seems to play a decisive role in the dissolution rate. With respect to intergranular corrosion, only coherent twin boundaries seem to be resistant.

Identification of native defects on the Te- and Bi-doped Bi2Te3 surface

  • Dugerjav, Otgonbayar;Duvjir, Ganbat;Kim, Jinsu;Lee, Hyun-Seong;Park, Minkyu;Kim, Yong-Sung;Jung, Myung-Wha;Phark, Soo-hyon;Hwang, Chanyong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.170.1-170.1
    • /
    • 2016
  • $Bi_2Te_3$ has long been studied for its excellent thermoelectric characteristics. Recently, this material has been known as a topological insulator (TI). The surface states within the bulk band gap of a TI, which are protected by the time reversal symmetry, contribute to the conduction at the surface, while the bulk is in insulating state. In contrast to the bulk defects tuning the chemical potential to the Dirac energy, the native defects near the surface are expected not to change the shape of the Fermi surface and the related spin structure. Using scanning tunneling microscopy (STM), we have systematically characterized surface or near surface defects in p- and n- doped $Bi_2Te_3$, and identified their structure by first principles calculations. In addition, bias-polarity dependences of STM images revealed the electron donor/acceptor nature of each defect. A detailed theoretical study of the surface states near the Dirac energy reveals the robustness of the Dirac point, which verifies the effectiveness of the disturbance on the backscattering from various kinds of defects.

  • PDF