• Title/Summary/Keyword: STFT(Short time fourier transform)

Search Result 119, Processing Time 0.025 seconds

Detection of Apnea Signal using UWB Radar based on Short-Time-Fourier-Transform (국소 퓨리에 변환 기반 레이더 신호를 활용한 무호흡 검출)

  • Hwang, Chaehwan;Kim, Suyeol;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.151-157
    • /
    • 2019
  • Recently, monitoring respiration of people has been of interest using non-invasive method. Among the vital signals usually used for indicating health status, non-invasive and portable device based monitoring respiratory status is practically useful and enable one to promptly deal with abnormal physical status. This paper proposes the approach to real-time detection of apnea signal based on Short-Time-Fourier-Transform(STFT). Contrary to the analysis of a signal in frequency domain using Fast-Fourier Transform, this paper employs Short-time-Fourier-Transform so that frequency response can be analyzed in short time interval. The respiratory signal is acquired using UWB radar sensor that enables one to obtain respiration signal in contactless way. Detection of respiratory status is carried out by analyzing frequency response, and classification of respiratory status can be provided. In particular, STFT is employed to analyze respiratory signal in real-time, leading to effective analysis of the respiratory status in practice. In the case of existence of noise in the signal, appropriate filtering process is employed as well. The proposed method is straightforward and is workable in practice to analyze the respiratory status of people. To evaluate the proposed method, experimental results are provided.

Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors

  • Yu, Lingyu;Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.185-215
    • /
    • 2005
  • Advanced signal processing techniques have been long introduced and widely used in structural health monitoring (SHM) and nondestructive evaluation (NDE). In our research, we applied several signal processing approaches for our embedded ultrasonic structural radar (EUSR) system to obtain improved damage detection results. The EUSR algorithm was developed to detect defects within a large area of a thin-plate specimen using a piezoelectric wafer active sensor (PWAS) array. In the EUSR, the discrete wavelet transform (DWT) was first applied for signal de-noising. Secondly, after constructing the EUSR data, the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used for the time-frequency analysis. Then the results were compared thereafter. We eventually chose continuous wavelet transform to filter out from the original signal the component with the excitation signal's frequency. Third, cross correlation method and Hilbert transform were applied to A-scan signals to extract the time of flight (TOF) of the wave packets from the crack. Finally, the Hilbert transform was again applied to the EUSR data to extract the envelopes for final inspection result visualization. The EUSR system was implemented in LabVIEW. Several laboratory experiments have been conducted and have verified that, with the advanced signal processing approaches, the EUSR has enhanced damage detection ability.

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee, Zhang-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform(WFT or STFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform(WT) is used to decompose the acoustic emission(AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

Source Localization of an Impact on a Plate using Time-Frequency Analysis (시간 주파수 분석을 이용한 충격발생 위치 추정)

  • Park, Jin-Ho;Choi, Young-Chul;Lee, Jeong-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.107-111
    • /
    • 2005
  • It has been reviewed whether it would be suitable that the application of the time-frequency signal analysis techniques to estimate the location of the impact source in plate structure. The STFT(Short Time Fourier Transform), WVD(Wigner-Ville distribution) and CWT(Continuous Wavelet Transform) methods are introduced and the advantages and disadvantages of those methods are described by using a simulated signal component. The essential of the above proposed techniques is to separate the traveling waves in both time and frequency domains using the dispersion characteristics of the structural waves. These time-frequency methods are expected to be more useful than the conventional time domain analyses fer the impact localization problem on a plate type structure. Also it has been concluded that the smoothed WVD can give more reliable means than the other methodologies for the location estimation in a noisy environment.

  • PDF

Real-time Failure Detection of Composite Structures Using Optical Fiber Sensors (광섬유 센서를 이용한 복합재 구조물의 실시간 파손감지)

  • 방형준;강현규;류치영;김대현;강동훈;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.128-133
    • /
    • 2000
  • The objective of this research is to develop real-time failure detection techniques for damage assessment of composite materials using optical fiber sensors. Signals from matrix cracking or fiber fracture in composite laminates are treated by signal processing unit in real-time. This paper describes the implementation of time-frequency analysis such as the Short Time Fourier Transform(STFT) to determine the time of occurrence of failure. In order to verify the performance of the optical fiber sensor for stress wave detection, we performed pencil break test with EFPI sensor and compared it with that of PZT. The EFPI sensor was embedded in composite beam to sense the failure signals and a tensile test was performed. The signals of the fiber optic sensor when damage occurred were characterized using STFT and wavelet transform. Failure detection system detected the moment of failure accurately and showed good sensitivity with the infinitesimal failure signal.

  • PDF

High Resolution FMCW Level Gauge with Narrowband FMCW Radar (협대역 FMCW 레이더를 이용한 고해상도 레벨게이지)

  • Eum, Soung-Hyun;Oh, Woo-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.899-905
    • /
    • 2012
  • Level Gauge using FMCW Radar is widely used and researched in many areas because of contactless, long range and flexibility. However FMCW level gauge requires wideband RF bandwidth for archiving high resolution of cm grade. In this paper we propose a new tx sawtooth waveform and processing algorithm with narrowband RF for wideband performance. The proposed method is based on STFT(Short-time fourier transform) and single sinusoidal carrier estimation method. From some experiments, we show that the resolution is improved upto 8 times with 300MHz FMCW radar.

Analysis Technique for the Vibration Signal of Revolution Machine Using the STFT (STFT를 이용한 회전체의 진동신호 분석 기법)

  • Park, Jong-Yeun;Park, Jun-Yong;Choi, Won-Ho
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.67-73
    • /
    • 2004
  • The purpose of this study is to analyze the vibration signal of the revolution machine using the STFT(Short Time Fourier Transform). It is common to analyze the frequency of signal through FFT algorithm with the fixed sampling rate. However, in this situation the order spectrum information useful rather than the general frequency information with the fixed sampling rate. In this paper, the resampling technique was used for getting the information of order spectrum. In resampling process, the arithmetic amount and MSE(Mean Square Error) for various kinds of the signal interpolation was compared and presented the propriety of the interpolation method while developing analysis equipment. Order tracking was implemented using signal interpolation method which it has selected. Then the analyzed results were obtained through simulation using the STFT technique.

  • PDF

Discrimination of Air PD Sources Using Time-Frequency Distributions of PD Pulse Waveform (부분방전 펄스파형의 시간-주파수분포를 이용한 기중부분방전원의 식별)

  • Lee Kang-Won;Kang Seong-Hwa;Lim Ki-Joe
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.332-338
    • /
    • 2005
  • PD(Partial Discharge) signal emitted from PD sources has their intrinsic features in the region of time and frequency STFT(Short Time Fourier Transform) shows time-frequency distribution at the same time. 2-Dimensional matrices(33$\times$77) from STFT for PD pulse signals are a good feature vectors and can be decreased in dimension by wavelet 2D data compression technique. Decreased feature vectors(13$\times$24) were used as inputs of Back-propagation ANN(Artificial Neural Network) for discrimination of Multi-PD sources(air discharge sources(3), surface discharge(1)). They are a good feature vectors for discriminating Multi-PD sources in the air.

Effective Noise Reduction using STFT-based Content Analysis (STFT 기반 영상분석을 이용한 효과적인 잡음제거 알고리즘)

  • Baek, Seungin;Jeong, Soowoong;Choi, Jong-Soo;Lee, Sangkeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.145-155
    • /
    • 2015
  • Noise reduction has been actively studied in the digital image processing and recently, block-based denoising algorithms are widely used. In particular, a low rank approximation employing WNNM(Weighted Nuclear Norm Minimization) and block-based approaches demonstrated the potential for effective noise reduction. However, the algorithm based on low rank a approximation generates the artifacts in the image restoration step. In this paper, we analyzes the image content using the STFT(Short Time Fourier Transform) and proposes an effective method of minimizing the artifacts generated from the conventional algorithm. To evaluate the performance of the proposed scheme, we use the test images containing a wide range of noise levels and compare the results with the state-of-art algorithms.

A Time-Frequency Analysis of the EEG for Yes/No response III (긍/부정 문답 관련 뇌파에 대한 시간-주파수 분석 III)

  • 남승훈;류창수;신승철;임태규;송윤선
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.286-290
    • /
    • 2002
  • 두뇌-컴퓨터 인터페이스(brain-computer interface)를 적용하기 위한 연구로서 주어진 문제에서 긍/부정을 선택할 때 나타나는 뇌파를 분별하기 위해서 시간-주파수 분석을 하였다. 단시간 퓨리에 변환(short time fourier transform : STFT)을 하여 긍/부정 선택시 뇌파의 시간-주파수 변화량을 보고, 시간-주파수 분해능이 좋은 웨이블릿 변환(wavelet transform)을 적용하여 서로 비교하였다. 두 가지 분석에서 공통된 결과는 주로 RT전 0.5초 주위에서 유의미한 결과를 나타내었고, 웨이블릿 분석에서 더 좁은 구간에 나타나며, 통계적으로 더 유의미한 결과를 나타내었다.

  • PDF