• Title/Summary/Keyword: STEP-LENGTH

Search Result 1,047, Processing Time 0.026 seconds

Molecular Cloning and Functional Expression of esf Gene Encoding Enantioselective Lipase from Serratia marcescens ES-2 for Kinetic Resolution of Optically Active (S)-Flurbiprofen

  • Lee, Kwang-Woo;Bae, Hyun-Ae;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.74-80
    • /
    • 2007
  • An enantioselective lipase gene (esf) for the kinetic resolution of optically active (S)-flurbiprofen was cloned from the new strain Serratia marcescens ES-2. The esf gene was composed of a 1,845-bp open reading frame encoding 614 amino acid residues with a calculated molecular mass of 64,978 Da. The lipase expressed in E. coli was purified by a three-step procedure, and it showed preferential substrate specificity toward the medium-chain-length fatty acids. The esf gene encoding the enantioselective lipase was reintroduced into the parent strain S. marcescens ES-2 for secretory overexpression. The transformant S. marcescens BESF secreted up to 217kU/ml of the enantioselective lipase, about 54-fold more than the parent strain, after supplementing 3.0% Triton X-207. The kinetic resolution of (S)-flurbiprofen was carried out even at an extremely high (R,S)-flurbiprofen ethyl ester [(R,S)-FEE] concentration of 500 mM, 130 kU of the S. marcescens ES-2 lipase per mmol of (R,S)-FEE, and 1,000 mM of succinyl ${\beta}-cyclodextrin$ as the dispenser at $37^{\circ}C$ for 12h, achieving the high enantiomeric excess and conversion yield of 98% and 48%, respectively.

CFD practical application in conceptual design of a 425 m cable-stayed bridge

  • Nieto, F.;Hernandez, S.;Jurado, J.A.;Baldomir, A.
    • Wind and Structures
    • /
    • v.13 no.4
    • /
    • pp.309-326
    • /
    • 2010
  • CFD techniques try to find their way in the bridge engineering realm nowadays. However, there are certain fields where they offer superior performance such as conceptual bridge design and bidding design. The CFD studies carried out for the conceptual design of a 425 m length cable-stayed bridge are presented. A CFD commercial package has been employed to obtain for a set of cross-sections the aerodynamic coefficients considering 2D steady state. Additionally, for those cross-sections which showed adequate force coefficients, unsteady 2D simulations were carried out to detect the risk of vortex shedding. Based upon these computations the effect on the aerodynamic behavior of the deck cross-section caused by a number of modifications has been evaluated. As a consequence, a new more feasible cross-section design has been proposed. Nevertheless, if the design process proceeds to a more detailed step a comprehensive set of studies, comprising extensive wind tunnel tests, are required to better find out the aerodynamic bridge behavior.

Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.99-110
    • /
    • 2017
  • In this paper, the effect of normal load on the failure mechanism of echelon joint has been studied using PFC2D. In the first step, calibration of PFC was undertaken with respect to the data obtained from experimental laboratory tests. Then, six different models consisting various echelon joint were prepared and tested under two low and high normal loads. Furthermore, validation of the simulated models were cross checked with the results of direct shear tests performed on non-persistent jointed physical models. The simulations demonstrated that failure patterns were mostly influenced by normal loading, while the shear strength was linked to failure mechanism. When ligament angle is less than $90^{\circ}$, the stable crack growth length is increased by increasing the normal loading. In this condition, fish eyes failure pattern occur in rock bridge. With higher ligament angles, the rock bridge was broken under high normal loading. Applying higher normal loading increases the number of fracture sets while dilation angle and mean orientations of fracture sets with respect to ligament direction will be decreased.

A new hybrid optimization algorithm based on path projection

  • Gharebaghi, Saeed Asil;Ardalan Asl, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.707-719
    • /
    • 2018
  • In this article, a new method is introduced to improve the local search capability of meta-heuristic algorithms using the projection of the path on the border of constraints. In a mathematical point of view, the Gradient Projection Method is applied through a new approach, while the imposed limitations are removed. Accordingly, the gradient vector is replaced with a new meta-heuristic based vector. Besides, the active constraint identification algorithm, and the projection method are changed into less complex approaches. As a result, if a constraint is violated by an agent, a new path will be suggested to correct the direction of the agent's movement. The presented procedure includes three main steps: (1) the identification of the active constraint, (2) the neighboring point determination, and (3) the new direction and step length. Moreover, this method can be applied to some meta-heuristic algorithms. It increases the chance of convergence in the final phase of the search process, especially when the number of the violations of the constraints increases. The method is applied jointly with the authors' newly developed meta-heuristic algorithm, entitled Star Graph. The capability of the resulted hybrid method is examined using the optimal design of truss and frame structures. Eventually, the comparison of the results with other meta-heuristics of the literature shows that the hybrid method is successful in the global as well as local search.

Fabrication of ZnO Nanorod based Robust Nanogenerator Metal Substrate (금속 기판적용을 통한 ZnO 나노로드기반 나노제너레이터 제조)

  • Baek, Seong-Ho;Park, Il-Kyu
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.331-336
    • /
    • 2015
  • We report on the succesful fabrication of ZnO nanorod (NR)-based robust piezoelectric nanogenerators (PNGs) by using Cu foil substrate. The ZnO NRs are successfully grown on the Cu foil substrate by using all solution based method, a two step hydrothermal synthesis. The ZnO NRs are grown along c-axis well with an average diameter of 75~80 nm and length of $1{\sim}1.5{\mu}m$. The ZnO NRs showed abnormal photoluminescence specrta which is attributed from surface plasmon resonance assistant enhancement at specific wavelength. The PNGs on the SUS substrates show typical piezoelectric output performance which showing a frequency dependent voltage enhancement and polarity dependent charging and discharging characteristics. The output voltage range is 0.79~2.28 V with variation of input strain frequency of 1.8~3.9 Hz. The PNG on Cu foil shows reliable output performance even at the operation over 200 times without showing degradation of output voltage. The current output from the PNG is $0.7{\mu}A/cm^2$ which is a typical out-put range from the ZnO NR-based PNGs. These performance enhancement is attributed from the high flexibility, high electrical conductivity and excellent heat dissipation properties of the Cu foil as a substrate.

Effect of Aquatic Exercise Program on Lower Extremity Muscle Strength, Balance and Gait Activity in Elderly Women (수중운동 프로그램 참여가 여성노인의 하지근력과 균형 및 보행능력에 미치는 영향)

  • Oh, Sang Boo;Lee, Hyun Chul;Lee, Sam Cheol
    • Journal of Korean Physical Therapy Science
    • /
    • v.20 no.1
    • /
    • pp.89-98
    • /
    • 2013
  • Purpose : The purpose of this study was to investigate the effect of the aquatic exercise program on lower muscle strength, balance and gait activity on 12 weeks aquatic exercise program in the elderly women. Methods : The Subjects in this study were 20 aged 70s who were long-term residents admitted to elderly nursing home of S, Gyeongsangnam province. They performed aquatic exercise programs 60-minute sessions, 3 times a week for 12 weeks. The physical evaluation was used for measuring lower muscle strength, balance activity was used for measuring balance testing, and gait activity was used for measuring gait velocity and maximal step length evaluation. All data were analyzed by paired t-Test by SPSS(version18.0). P-values of <.05 were considered significant. Results : Lower extremity muscle strength, static dynamic balance and gait activity were significantly increased both in the exercise group and between groups. Conclusion : This study suggests that aquatic exercise program has an effect on lower extremity muscle strength, balance and gait activity of the elderly women. Therefore, it is considered as a safe and helpful self-support activity for the elderly people.

  • PDF

A Statistical Approach for the Size Effect on the Strength of CFRP (탄소섬유 복합재의 강도 크기효과에 관한 통계적 접근)

  • Hwang, Tae-Kyeong;Kim, Hyung-Kun;Kim, Seong-Eun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.472-476
    • /
    • 2011
  • This paper presents the results of theoretical analysis and experimental test to verify the size effect on the fiber strength of filament wound pressure vessel. As a test method, a series of fully scaled hoop ring tests with filament wound carbon fiber-epoxy has been conducted. Test results showed remarkable size effect on fiber strength. And, as an analytical method, the WWLM(Weibull weakest link model) and SMFM(sequential multi-step failure model) were considered and compared to hoop ring test data. The analysis results showed significantly lower fiber strength value than that of test data. Through the modification of length size effect, modified SMFM is suggested. The fiber strengths from modified SMFM showed good agreement with test data.

  • PDF

Real-Time CoM/ZMP Trajectory Transformation Method for Humanoid Robots Considering Structure Characteristics (구조 특성을 반영한 인간형 로봇을 위한 실시간 CoM/ZMP 궤적 변환 방법)

  • Hong, Seok-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.132-137
    • /
    • 2017
  • This paper proposes a transformation method of the zero moment point (ZMP) and the center of mass (CoM) from one walking pattern to other patterns by considering the structure of a robot or walking situations in real time. In general, a humanoid robot has own structure characteristics like height and mass. The structure characteristics make the given CoM/ZMP walking pattern of one human or one humanoid robot to be difficult to apply to other robot directly. For this purpose, we analyze the characteristics of walking patterns according to the step length, duration of walking support phase and the CoM height by using the cart-table model as the simple humanoid robot model. A transformation equation is derived from the analyzation and it is verified with simulation.

Implementation on Optimal Pattern Classifier of Chromosome Image using Neural Network (신경회로망을 이용한 염색체 영상의 최적 패턴 분류기 구현)

  • Chang, Y.H.;Lee, K.S.;Chong, H.H.;Eom, S.H.;Lee, Y.W.;Jun, G.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.290-294
    • /
    • 1997
  • Chromosomes, as the genetic vehicles, provide the basic material for a large proportion of genetic investigations. The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, we propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of two-step multi-layer neural network(TMANN). We are employed three morphological feature parameters ; centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.), as input in neural network by preprocessing twenty human chromosome images. The results of our experiments show that our TMANN classifier is much more useful in neural network learning and successful in chromosome classification than the other classification methods.

  • PDF

Application of numerical models to evaluate wind uplift ratings of roofs: Part II

  • Baskaran, A.;Molleti, S.
    • Wind and Structures
    • /
    • v.8 no.3
    • /
    • pp.213-233
    • /
    • 2005
  • Wind uplift rating of roofing systems is based on standardized test methods. Roof specimens are placed in an apparatus with a specified table size (length and width) then subjected to the required wind load cycle. Currently, there is no consensus on the table size to be used by these testing protocols in spite of the fact that the table size plays a significant role in wind uplift performance. Part I of this paper presented a study with the objective to investigate the impact of table size on the performance of roofing systems. To achieve this purpose, extensive numerical experiments using the finite element method have been conducted and benchmarked with results obtained from the experimental work. The present contribution is a continuation of the previous research and can be divided into two parts: (1) Undertake additional numerical simulations for wider membranes that were not addressed in the previous works. Due to the advancement in membrane technology, wider membranes are now available in the market and are used in commercial roofing practice as it reduces installation cost and (2) Formulate a logical step to combine and generalize over 400 numerical tests and experiments on various roofing configurations and develop correction factors such that it can be of practical use to determine the wind uplift resistance of roofs.