Mesoscale low is often observed over the downstream region of the East Sea (or, northwest coast off the Japan Islands) during East-Asia winter monsoon. The low system causes a heavy snowfall at the region. A series of numerical experiments were conducted with the aid of a regional model (MM5 ver. 3.5) to examine the formation mechanism of the mesoscale low. The following results were obtained: 1) A well-developed mesoscale low was simulated by the regional model under real topography, NCEP reanalysis, and OISST; 2) The mesoscale low was simulated under a zonally averaged SST without topography. This implies that the meridional gradient of SST is the main factor in the formation of a mesoscale low; 3) A thermal contrast ($>10^{\circ}C$) of land-sea and topography-induced disturbance served as the second important factor for the formation; 4) Paektu Mountain caused the surface wind to decelerate downstream, which created a more favorable environment for thermodynamic modification than that was found in a flat topography; and 5) The types of cumulus parameterizations did not affect the development of the mesoscale low.
In this study, the principal components of rainfall in Korea are extracted by a method which consists of the independent component analysis combined with the wavelet transform, to examine the spatial correlation between seasonal rainfalls and global sea surface temperatures (SSTs). The 2-8 year band retains a strong wavelet power spectrum and the low frequency characteristics are shown by the wavelet analysis. The independent component analysis is performed by using the Scale Average Wavelet Power(SAWP) that is estimated by wavelet analysis. Interannual-interdecadal variation is the dominant variation, and an increasing trend is observed in the spring and summer seasons. The relationships between principal components of rainfall in the spring/summer seasons and SSTs existed in Indian and Pacific Oceans. Particularly, the SST zones, which represent a statistically significant correlation are located in the Philippine offshore and Australia offshore. Also, the three month leading SSTs in the same region we strongly correlated with the rainfall. Hence, these results propose a promising possibility of seasonal rainfall prediction by SST predictors.
Accurate determination of Sea Surface Temperature (SST) is essential for ocean and climate studies. This paper estimated SST in the sea region around the Korea from the Advenced Very High Resolution Radiometer(AVHRR) channel 4 data on board NOAA-9 satellite. The processing procedure used to derive SSTs utilized: 1) Ascending node prediction of satellite orbit 2) Geometric correction 3) Radiometric calibration and radiance to temperature conversion look up table 4) Removing cloudy area. SST product results are displayed as colored video and hardcopy. In this processing, geometric correction is derived from equator crossing time, ascending time and subpoint coordinate information. Also, normalized response function of infrared 10.5-11.5$\mu\textrm{m}$ wavelength is used for temperature conversion. The SST derived from this processing is relatively similar to the measurements made by ship data, but because of water vapor attenuation SST from satellite are in general 2$^{\circ}$- $^{\circ}C$ lower than the ship data.
Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
International Journal of Aeronautical and Space Sciences
/
v.17
no.1
/
pp.8-19
/
2016
This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.
Recently, climate change around the world due to global warming has became an important issue and damages by climate change have a bad effect on human life. Changes of Sea Surface Temperature(SST) is associated with natural disaster such as Typhoon and El Nino. So we predicted daily future SST using Statistical Downscaling Method and CGCM 3.1 A1B scenario. 9 points of around Korea peninsular were selected to predict future SST and built up a regression model using Multiple Linear Regression. CGCM 3.1 was simulated with regression model, and that comparing Probability Density Function, Box-Plot, and statistical data to evaluate suitability of regression models, it was validated that regression models were built up properly.
International Journal of Aeronautical and Space Sciences
/
v.13
no.3
/
pp.307-316
/
2012
Numerical simulations of 3D aircraft configurations are performed in order to understand the effects of turbulence models on the prediction of aircraft's aerodynamic characteristics. An in-house CFD code that solves 3D RANS equations and two-equation turbulence model equations are used. The code applies Roe's approximated Riemann solver and an AF-ADI scheme. Van Leer's MUSCL extrapolation with van Albada's limiter is also adopted. Various versions of Menter's $k-{\omega}$ SST turbulence models as well as Coakley's $q-{\omega}$ model are incorporated into the CFD code. Menter's $k-{\omega}$ SST models include the standard model, the 2003 model, the model incorporating the vorticity source term, and the model containing controlled decay. Turbulent flows over a wing are simulated in order to validate the turbulence models contained in the CFD code. The results from these simulations are then compared with computational results from the $3^{rd}$ AIAA CFD Drag Prediction Workshop. Numerical simulations of the DLR-F6 wing-body and wing-body-nacelle-pylon configurations are conducted and compared with computational results of the $2^{nd}$ AIAA CFD Drag Prediction Workshop. Aerodynamic characteristics as well as flow features are scrutinized with respect to the turbulence models. The results obtained from each simulation incorporating Menter's $k-{\omega}$ SST turbulence model variations are compared with one another.
The ocean is linked to long-term climate variability, but there are very few methods to assess the short-term performance of forecast models. This study analyzes the short-term prediction performance regarding ocean temperature and salinity of the Global Seasonal prediction system version 5 (GloSea5). GloSea5 is a historical climate re-creation (2001-2010) performed on the 1st, 9th, 17th, and 25th of each month. It comprises three ensembles. High-resolution hindcasts from the three ensembles were compared with the Array for Real-Time Geostrophic Oceanography (ARGO) float data for the period 2001-2010. The horizontal position was preprocessed to match the ARGO float data and the vertical layer to the GloSea5 data. The root mean square error (RMSE), Brier Score (BS), and Brier Skill Score (BSS) were calculated for short-term forecast periods with a lead-time of 10 days. The results show that sea surface temperature (SST) has a large RMSE in the western boundary current region in Pacific and Atlantic Oceans and Antarctic Circumpolar Current region, and sea surface salinity (SSS) has significant errors in the tropics with high precipitation, with both variables having the largest errors in the Atlantic. SST and SSS had larger errors during the fall for the NINO3.4 region and during the summer for the East Sea. Computing the BS and BSS for ocean temperature and salinity in the NINO3.4 region revealed that forecast skill decreases with increasing lead-time for SST, but not for SSS. The preprocessing of GloSea5 forecasts to match the ARGO float data applied in this study, and the evaluation methods for forecast models using the BS and BSS, could be applied to evaluate other forecast models and/or variables.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.2207-2211
/
2008
한반도 및 동아시아의 여름철은 장마와 태풍으로 인한 집중호우의 발생으로 많은 피해를 입는다. 따라서 여름철에 나타나는 이러한 집중호우가 나타나는 지역, 시기, 기간, 그리고 강수량 등을 예측하는 것은 매우 중요하다. 특히, 효율적인 수자원 관리를 위하여 이러한 예측은 매우 중요한데, 단기적으로 정확하고 신속하게 강수를 예측하는 것도 중요하지만, 장기적으로 계절 강수, 특히 여름철의 장마 또는 우기의 시기와 강수량과 태풍 발생의 시기 등을 미리 예측하여 이에 따른 집중 호우의 발생 지역, 기간, 강수량을 예측하여 사전에 대비하는 것도 매우 중요하다. 특히, 최근에는 6,7월 장마에 의한 집중 호우의 영향보다도 8월에 강수량이 높아지고 있는 경향을 보이므로 강수량의 장기적 경향의 파악이 매우 중요하다. 장기 기후를 예측하는 데는 과거 자료를 이용한 통계 방법도 유용하지만 최근에는 AOGCM (Atmospheric Oceanic General Circulation Model)을 이용한 연구가 활발하게 이루어지고 있다. 하지만 강수와 같이 지역적으로 나타나는 현상은 저해상도의 AOGCM으로는 유용한 정보를 제공하기가 어려움이 따른다. 따라서 본 연구에서는 전구를 삼각형으로 된 20면체로 격자화 시켜 모든 격자의 크기가 거의 동일하고, 해상도 조절이 가능한 Geodesic 격자를 활용한 GME 모델을 사용하였다. GME 모델은 icosahedral-hexagonal grid 격자 체계를 가진 독일 기상청(Deutscher Wetterdient)에서 현업으로 사용 중인 모델이다. 본 연구에서는 수직/수평 해상도를 40km/40layers로 하여 GME 모델을 수행하였으며, 일간격의 장기 기후 자료를 생산하였다. 사용된 초기자료로는 ECMWF (European Centre for Medium Range Weather Forecasts) 자료이며, 경계 자료로는 ERA Climatology의 최근 30년간의 SST (Sea Surface Temperature) 평균 자료를 이용하여 규준 실험(Control Run), 즉, climatology 자료를 생산하였으며, persistent SST 아노말리와 ERA Climatology의 최근 30년간의 SST 자료를 이용하여 내삽 과정을 거친 SST forcing을 주어서 예측 실험(Prediction Run)을 통하여 모의 자료를 생산하였다. 특히, 규준 실험에서는 수치 모델이 가지는 불확실성을 줄이고 예보 정확도를 향상시키기 위하여 각각의 실험은 초기자료를 달리한 앙상블 모의실험을 수행하였다. 장기 모의 3개월을 위하여 모의 기간 1달 전부터 모의를 수행하여, 첫 1달은 모델의 spin-up 시간으로 분석에서 제외 하였다. 생산된 Climatology 자료와 Prediction 자료를 비교하여 아노말리와 Category 분석을 실시하여 한반도 및 동아시아 지역의 강수(Precipitation)를 중심으로 기압장(Pressure), 온도(2m Temperature) 위주로 분석하였다. 이러한 예측된 매 계절의 전망 자료 중에서도 수자원 분야에서 관심이 집중되는 여름철에 초점을 맞추어 실제 관측 자료와 비교하여 GME 모델의 계절 모의 예측성 성능을 분석하여 평가하고 다가올 여름철의 강수량의 장기 변화를 모의하고자 하였다.
Sea Surface Temperature (SST) is an important environmental indicator that affects climate coupling systems around the world. In particular, coastal regions suffer from abnormal SST resulting in huge socio-economic damage. This study used Long Short Term Memory (LSTM) and Convolutional Long Short Term Memory (ConvLSTM) to predict SST up to 7 days in the south sea region in South Korea. The results showed that the ConvLSTM model outperformed the LSTM model, resulting in a root mean square error (RMSE) of 0.33℃ and a mean difference of -0.0098℃. Seasonal comparison also showed the superiority of ConvLSTM to LSTM for all seasons. However, in summer, the prediction accuracy for both models with all lead times dramatically decreased, resulting in RMSEs of 0.48℃ and 0.27℃ for LSTM and ConvLSTM, respectively. This study also examined the prediction of abnormally high SST based on three ocean heatwave categories (i.e., warning, caution, and attention) with the lead time from one to seven days for an ocean heatwave case in summer 2017. ConvLSTM was able to successfully predict ocean heatwave five days in advance.
Journal of Korean Society for Atmospheric Environment
/
v.27
no.1
/
pp.30-40
/
2011
Numerical simulations were carried out to investigate the impact of SST spatial distribution on the result of air quality modeling. Eulerian photochemical dispersion model CAMx (Comprehensive Air quality Model with eXtensions, version 4.50) was applied in this study and meteorological fields were prepared by RAMS (Regional Atmospheric Modeling System). Three different meteorological fields, due to different SST spatial distributions were used for air quality modeling to assess the sensitivity of CAMx modeling to the different meteorological input data. The horizontal distributions of surface ozone concentrations were analyzed and compared. In each case, the simulated ozone concentrations were different due to the discrepancies of horizontal SST distributions. The discrepancies of land-sea breeze velocity caused the difference of daytime and nighttime ozone concentrations. The result of statistic analysis also showed differences for each case. Case NG, which used meteorological fields with high resolution SST data was most successfully estimated correlation coefficient, root mean squared error and index of agreement value for ground level ozone concentration. The prediction accuracy was also improved clearly for case NG. In conclusion, the results suggest that SST spatial distribution plays an important role in the results of air quality modeling on high ozone episode at coastal region.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.