• Title/Summary/Keyword: SST cooling

Search Result 53, Processing Time 0.038 seconds

Temporal and Spatial Variations of Marine Meteorological Elements and Characteristics of Sea Fog Occurrence in Korean Coastal Waters during 2013-2017 (2013~2017년 연안해역별 해양기상요소의 시·공간 변화 및 해무발생시 특성 분석)

  • Park, So-Hee;Song, Sang-Keun;Park, Hyeong-Sik
    • Journal of Environmental Science International
    • /
    • v.29 no.3
    • /
    • pp.257-272
    • /
    • 2020
  • This study investigates the temporal and spatial variations of marine meterological elements (air temperature (Temp), Sea Surface Temperature (SST), and Significant Wave Height (SWH)) in seven coastal waters of South Korea, using hourly data observed at marine meteorological buoys (10 sites), Automatic Weather System on lighthouse (lighthouse AWS) (9 sites), and AWS (20 sites) during 2013-2017. We also compared the characteristics of Temp, SST, and air-sea temperature difference (Temp-SST) between sea fog and non-sea-fog events. In general, annual mean values of Temp and SST in most of the coastal waters were highest (especially in the southern part of Jeju Island) in 2016, due to heat waves, and lowest (especially in the middle of the West Sea) in 2013 or 2014. The SWH did not vary significantly by year. Wind patterns varied according to coastal waters, but their yearly variations for each coastal water were similar. The maximum monthly/seasonal mean values of Temp and SST occurred in summer (especially in August), and the minimum values in winter (January for Temp and February for SST). Monthly/seasonal mean SWH was highest in winter (especially in December) and lowest in summer (June), while the monthly/seasonal variations in wind speed over most of the coastal waters (except for the southern part of Jeju Island) were similar to those of SWH. In addition, sea fog during spring and summer was likely to be in the form of advection fog, possibly because of the high Temp and low SST (especially clear SST cooling in the eastern part of South Sea in summer), while autumn sea fog varied between different coastal waters (either advection fog or steam fog). The SST (and Temp-SST) during sea fog events in all coastal waters was lower (and more variable) than during non-sea-fog events, and was up to -5.7℃ for SST (up to 5.8℃ for Temp-SST).

A Study on the Film-cooling Characteristics of Gas Turbine Blade with Various Area Ratios and Ejection Angles of the Double Jet Holes (이중분사 홀의 면적비와 분사각 변화에 따른 가스터빈 막냉각 특성 연구)

  • Cho, Moon-Young;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.59-64
    • /
    • 2014
  • The kidney vortex is the important factor adversely influencing film cooling effectiveness. In general, double jet film-cooling hole is designed to overcome the kidney vortex by generating anti-kidney vortices. In this study, the film cooling characteristics and the effectiveness of the double jet film cooling hole were numerically investigated with various area ratios of the first($A_1$) and second($A_2$) cooling hole($A_1/A_2$=0.8, 1.0, 1.25) and lateral ejection angle(${\alpha}$ = $30^{\circ}$, $45^{\circ}$, $60^{\circ}$) as the design parameters. The effects of lateral distance between the first and second row holes are investigated. Numerical study was performed by using ANSYS CFX with the shear stress transport(SST) turbulence model. The film cooling effectiveness and temperature distribution were graphically depicted with various flow and geometrical conditions.

Seasonal Cycle of Sea Surface Temperature in the East Sea and its Dependence on Wind and Sea Ice

  • Park, Kyung-Ae;Chung, Jong-Yul;Kim, Kuh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.618-620
    • /
    • 2003
  • Harmonics of sea surface temperature (SST) in the East Sea and their possible causes are examined by analyzing NOAA/AVHRR data, SSM/I wind speeds, NSCAT wind vectors, and NCEP heat flux data. Detailed spatial structures of amplitudes and phases of the seasonal cycles and their contributions to the total variance of SST have quantitatively. The Subpolar front serves as a boundary between regions of high annual amplitudes (${\geq}$10$^{\circ}$C) in the cold continental region and low amplitudes (${\leq}$10$^{\circ}$C) in the Tsushima Warm Current region. The low phase center of annual cycle is located over a seamount at 132.2$^{\circ}$E, 41.7$^{\circ}$N south of Vladivostok. Semi-annual amplitudes are significantly large leaching over 20% of the annual amplitudes in the Tatarskiy Strait and along the continental shelf off Russian coast in fall and spring, but its forcings are substantially annual. We have shown that fall cooling is attributed by direct and local wind forcing, while spring cooling is remotely forced by cold waters from sea ices in the Tatarskiy Strait.

  • PDF

Past sea surface temperature of the East Sea inferred from alkenone

  • Lee, Kyung-Eun;Kim, Kyung-Ryul
    • Journal of the korean society of oceanography
    • /
    • v.37 no.1
    • /
    • pp.27-34
    • /
    • 2002
  • We measured the alkenone concentration of bulk sediments from a piston core collected from the Ulleung Basin in the East Sea in order to reconstruct past sea surface temperatures (SST). Sediment ages are well constrained by AMS $^{14}C$ dates of the planktonic foraminifera Globigerina bulloides. Coretop alkenone SST calibration with modern surface temperatures and sediment trap dat (Hong et al., 1996) indicate that the SST estimated from alkenones most likely represent the temperatures of late fall. Downcore variations in the alkenone saturation index indicate that between 19 and 15 kyr BP the surface waters were about $3^{\circ}C$ warmer than today. Between 15 and 11 kyr BP, the temperatures were about $3^{\circ}C$ lower than today. A rapid SST increase of about $3^{\circ}C$ occurred at approximately 10 kyr BP. After considering the factors which might influence the SST reconstruction from the $U^{k'}_{37}$ values, we conclude that the alkenone temperature estimates are reliable. The reason for glacial warming in the East Sea is not clear, although there is a possibility that it could be caused by shift in the season of maximum alkenone production from summer during the last glaciation to late fall during the Holocene. Cooling between 15 and 11 kyr BP may be due to inflow of cold water into the East Sea such as via the Oyashio Current or ice-melt water. Warming at the early Holocene could be due to inflow of the Tsushima Current into the East Sea through the Korea Strait.

Abnormal Oceanic Conditions Caused by Typhoons Around the Korean Peninsula (태풍에 의해 발생하는 한국근해 해황이상변동)

  • SUH Young-Sang;GU Ji-Young;HWANG Jae-Dong;LEE Na-Kyung;KIM Bok-Kee;JANG Lee-Hyun;KANG Yong-Q;LEE Dong-In
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.4
    • /
    • pp.417-429
    • /
    • 2003
  • Abnormal oceanic conditions associated with the passage of typhoons are examined using hydrographic and satellite data 1990-2002. During the passage period of typhoons in the Korean waters, an abrupt decrease of sea surface temperature (SST) in range of 5 to $8^{\circ}C$ was observed. The areas of SST decrease were an order of 100-200 km, and the low SST lasted about 15-25 days after passage of typhoon. After passage of typhoon, the water temperatures in the surface mixed layer of 30 m show negative anomalies for quite a long period. In addition, stratification parameters were substantially decreased and chlorophyll a density was rapidly increased.

Abnormal oceanic conditions around the Korean peninsula caused by typhoons

  • Suh, Young-Sang;Gu, Ji-Young;Hwang, Jae-Dong;Lee, Na-Kyung;Jang, Lee-Hyun;Jeon, Kyoung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.640-641
    • /
    • 2003
  • Abnormal oceanic conditions associated with the passage of typhoons are examined using hydrographic and satellite data 1990-2002. During the passage period of typhoons in the Korean waters, an abrupt decrease of sea surface temperature(SST) in range of 5 to 8 $^{\circ}$ was observed. The areas of SST decrease were an order of 100-200km, and the low SST lasted about 15-25 days after passage of typhoon. After passage of typhoon, the water temperatures in the surface mixed layer of 30m show negative anomalies for quite a long period. In addition, stratification parameters were substantially decreased and chlorophyll a density was rapidly increased.

  • PDF

Sea Surface Cooling in the East Sea with the Passage of Typhoons (태풍통과시 동해에서의 해수면 냉각현상)

  • HONG Chul-Hoon;SOHN Ik-Sung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.2
    • /
    • pp.137-147
    • /
    • 2004
  • Sea surface cooling (SSC) with the passage of typhoons is examined in the East Sea using the Japan Meteorological Agency buoy data $(37^{\circ}45'N,\;134^{\circ}23'E)$ during 1983-2000 and a three-dimensional primitive equation model (the Princeton Ocean Model). Forty typhoons in this period induced the SST decrease ranging from about $-0.5^{\circ}C\;to\;-4.3^{\circ}C.$ Intense SSC $(<-2^{\circ}C)$ occurs with typhoons that passed mainly through the left-hand side of the buoy station. The model is implemented to examine a physical process of SSC with a typical-track typhoon in the northwestern Pacific $(24^{\circ}N\;to\;52^{\circ}N).$ The model well reproduces prominent features in the observation and addresses how it happens; SSC is induced mainly by momentum mixing effect stirred with the typhoon rather than upwelling.

A Numerical Study of Sea Surface Cooling with the Passage of Typhoon Abby in the Northwestem Pacific (북서태평양에서 3차원 수치모델을 이용한 해수면냉각에 미치는 태풍의 영향)

  • Hong, Chul-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.6
    • /
    • pp.518-524
    • /
    • 2008
  • A three-dimensional primitive equation model (POM) and the buoy data (2900 N, 13500 E) from the Japan Meteorological Agency (JMA) for 27 typhoons between 1982 and 2000 are used to investigate the sea surface cooling (SSC) that accompanies typhoons in the northwestern Pacific. Observed sea surface temperatures (SSTs) rapidly drop 0.6 to 4.3 C, and SSC continues for several weeks after the passage of a typhoon. The model, which covers most of the northwestern Pacific ($24^{\circ}N$ to $52^{\circ}N$), simulated Typhoon Abby over the tropical Pacific, and successfully reproduces many observed features, including the pattern of SST decrease, inertial oscillations, etc. The model accurately simulated the SSC process, suggesting that the cyclonic eddy with a radius of a few hundred kilometers that trailed Typhoon Abby plays an important role in SSC.

Mixing Augmentation with Cooled Pylon Injection in Scramjet Combustor (냉각 파일런 분사를 이용한 스크램제트 연소기 내 혼합증대)

  • Lee, Sang-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.594-597
    • /
    • 2009
  • The mixing characteristics of pylon injection in a Scramjet combustor and effects of film cooling to protect pylon from air-heating. Three-dimensional Navier-Stokes equations with $k-{\omega}$ SST turbulence model were used. Fuel hydrogen and air were considered as coolants. There were remarkable improvements of penetration and mixing rate with the pylon injection. There also over-heating on the front surface of pylon without film cooling. The coolant injected parallel to the front surface of the pylon protect the pylon from over-heating.

  • PDF

Simulation of the Mixed Layer in the Western Equatorial Pacific Warm Pool

  • Jang, Chan-Joo;Noh, Yign
    • Ocean and Polar Research
    • /
    • v.24 no.2
    • /
    • pp.135-146
    • /
    • 2002
  • The upper ocean in the western equatorial Pacific warm pool during TOGA-COARE IMET IOP was simulated using a one-dimensional turbulence closure ocean mixed-layer model, which considered recent observations, such as the remarkable enhancement of turbulent kinetic energy near the ocean surface. The shoaling/deepening of the mixed layer and warming/cooling subsurface water in the model were in reasonable agreement with the observations. There was a significant improvement in simulating the cooling trend of the sea surface temperature under a westerly wind burst with heavy rainfall over previous simulations using bulk mixed-layer models. By contrast the simulated sea surface salinity (SSS) departed significantly from the observed SSS, especially during a westerly burst and the subsequent restratification period, which might be due to 3-D control processes, such as downwelling/upwelling or advection.