• Title/Summary/Keyword: SST 난류모델

Search Result 122, Processing Time 0.027 seconds

Parametric Study of Transient Spoiler Aerodynamics with Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 스포일러 천이적 공력특성의 파라메트릭 연구)

  • Choi S. W.;Chang K. S.;Ok H. N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.15-24
    • /
    • 2000
  • The transient response of an airfoil to a rapidly deploying spoiler is numerically investigated using the turbulent compressible Navier-Stokes equations in two dimensions. Algebraic Baldwin-Lomax model, Wilcox $\kappa-\omega$ model, and SST $\kappa-\omega$ turbulence model are used to calculate the unsteady separated flow due to the rapid spoiler deployment. The spoiler motion relative to a stationary airfoil is treated by an overset grid hounded by a Dynamic Domain-Dividing Line which has been devised by the authors. The adverse effects of the spoiler influenced by the spoiler location and the hinge gap are expounded. The numerical results are in reasonably good agreement with the existing experimental data.

  • PDF

Numerical Analysis of Effect of Baffles with 9 Diamond Type Holes on Flow Pattern (9개 다이아몬드형 구멍이 설치된 배플이 유동 양상에 미치는 효과에 대한 수치해석)

  • Ary, B.K.P;Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.32-38
    • /
    • 2011
  • 2개의 경사 배플을 가진 사각 채널내의 열전달과 유동양상에 특성을 조사하기 위해 수치해석을 행하였다. 본 연구에서는 바닥에서만 가열된 채널 내 2개의 배플에 9개의 다이아몬드형 구멍을 설치하였다. 배플은 19.8 cm의 폭과 23.2 cm의 길이 그리고 0.5 cm의 두께의 플렉시 글라스를 사용하였다. 다이아몬드형 구멍의 크기는 $2.55\;cm{\times}2.55\;cm$이며 배플 경사각은 $5^{\circ}$를 유지하였다. 레이놀즈수의 범위는 23,000에서 57,000 이다. SST k-${\omega}$ 난류모델을 사용하였다. 누셀트(Nu) 수의 수치해석 결과는 실험 결과로 검증하였다. 유동장에 관한 수치해석으로부터 배플 구멍 근처의 유동 양상을 나타낼 수 있었고 이러한 유동장이 온도장의 특징에 크게 영향을 미친다는 것을 나타내었다. 국부 누셀트수는$x/D_h$=2.5 에서 최대가 되었다.

AERODYNAMIC ANALYSIS AND COMPARISON OF EXPERIMENTAL DATA FOR 2-BLADED VERTICAL AXIS WIND TURBINE (2엽형 수직축 풍력발전기의 유동해석 및 실험 비교)

  • Hwang, M.H.;Kim, D.H.;Lee, J.W.;Oh, M.W.;Kim, M.H.;Ryu, G.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.85-91
    • /
    • 2010
  • In this study, aerodynamic analyses based on unsteady computational fluid dynamics (CFD) have been conducted for a 2-bladed vertical-axis wind turbine (VAWT) configuration. Reynolds-averaged Navier-Stokes equations with standard $k-{\varepsilon}$ and SST $k-{\varepsilon}$ turbulence models are solved for unsteady flow problems. The experiment model of 2-bladed VAWT has been designed and tested in this study. Aerodynamic experiment of the present VAWT model are effectively conducted using the vehicle mounted testing system. The comparison result between the experiment and the computational fluid dynamics (CFD) analysis are presented in order to verify the accuracy of CFD modeling with different turbulent models.

Flow Analysis and Performance Evaluation of a Ventilation Axial-Flow Fan Depending on the Position of Motor (환기용 축류송풍기의 유동해석 및 모터 위치에 따른 성능 특성 연구)

  • Kim, Jae-Woo;Kim, Jin-Hyuk;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.25-30
    • /
    • 2010
  • Flow analysis and performa nce evaluation have been performed for a ventilation axial-flow fan with different positions of the motor. Two different positions of motor have been tested; one is in front of the impeller and the other is behind the impeller. Flow analyses are performed by solving three-dimensional Reynolds-averaged Navier-Stokes equations through a finite-volume solver. Preliminary numerical calculations are carried out to test the performances of different turbulence models, i.e., SST model, k-$\omega$ model, and k-$\varepsilon$ model with and without using empirical wall function in the flow analysis. The validation of numerical analyses has been performed in comparison with the experimental data. The numerical results for the performance characteristics of the ventilation axial-flow fan with two different positions of the motor have been presented.

Numerical Investigation for Drag Prediction of an Axisymmetric Underwater Vehicle with Bluff Afterbody (기저부를 갖는 축대칭 수중운동체의 저항예측에 관한 수치적 연구)

  • Kim, Min-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.372-377
    • /
    • 2010
  • The objective of this study is to predict the drag of an axisymmetric underwater vehicle with bluff afterbody using CFD. FLUENT, commercial CFD code, is used to simulate high Reynolds number turbulent flows around the vehicle. The computed drag coefficients are compared to available experimental data at various Reynolds numbers. Four widely used two-equation turbulence models are investigated to evaluate their performance of predicting the anisotropic turbulence in a recirculating flow region, which is caused by flow separation arising from the base of the vehicle. The simulations with Realizable ${\kappa}-{\varepsilon}$ and ${\kappa}-{\omega}$ SST turbulence models predict the anisotropic turbulent flows comparatively well and the drag prediction results with those models show good agreements with the experimental data.

Mixing Characteristics of Multiple Injection in Supersonic Flow (초음속 유동장 내 연료 다중 분사의 혼합 특성)

  • Lee Jong-Hwan;Lee Sang-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.53-56
    • /
    • 2004
  • The mixing characteristics of a multiple transverse injection system in a scramjet combustor were studied with numerical methods. The distance among injectors on mixing characteristics were investigated. The three-dimensional Wavier-Stokes equations including k-w SST turbulence model were solved. It was shown that the mixing characteristics of a multiple transverse injection system were very different from those of a single and a dual injection system; the rear injection flow was strongly influenced by blocking effect due to the momentum flux of the front injection flow and thus had higher expansion and penetration than the front injection flow. The multiple injection system had higher mixing rate, higher penetration but had more losses of stagnation pressure than the single injection system.

  • PDF

Numerical Study of Dual Bell Nozzle by applying the Concept of Expansion-Deflection Nozzle (듀얼 벨 노즐에 확장-굴절(E-D) 노즐 개념을 적용한 기초 전산수치해석)

  • Moon, Taeseok;Park, Sanghyeon;Choi, Junsub;Huh, Hwanil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.679-681
    • /
    • 2017
  • Numerical analysis was carried out by applying the concept of E-D(expansion-deflection) nozzle to dual bell nozzle. We used the CEA code to calculate the chemical composition of the nozzle and to analyze the freezing flow of 8 species. The turbulence model was chosen as the $k-{\omega}$ SST. We applied the concept of E-D nozzle to the dual bell nozzle and performed the calculated transition altitude and performance. As a result of the interpretation, the application of the E-D nozzle concept led to the formation of over-expansion conditions, which resulted in an increase in the transition altitude.

  • PDF

Internal Flow characteristics of Ramjet Supersonic Intake (램제트 초음속 흡입구 내부 유동 특성)

  • Lee, Hyoung-Jin;Kim, Sei-Hwan;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.331-334
    • /
    • 2011
  • The performance of ramjet engine is closely associated with a supersonic intake. In this study, experiments and computational simulations were conducted to observe the internal flow characteristics of the supersonic intake. The supersonic intake which have self-starting characteristics was designed and manufactured. The flow characteristics was analyzed from the experimental results using the supersonic wind tunnel testing and computational results using RANS equation and Menter's SST turbulence model. The detailed visualization results were suggested for the pseudo-shock wave of stable operations and for the inlet buzz phenomenon of unstable operations.

  • PDF

Three-dimensional Effects of an Axi-symmetric Pintle Nozzle (축대칭 핀틀노즐의 3차원 효과 분석)

  • Lee, Gang-Min;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.47-55
    • /
    • 2018
  • In order to determine whether three-dimensional effects exist in a pintle nozzle of axisymmetric shape, a three-dimensional numerical analysis was performed. The compressibility correction was implemented with the k-${\omega}$ SST turbulence model to predict the complex flow separation transition in acceptable accuracy. Recirculation zones were observed at both the front end and rear faces of the pintle, and the flow through the pintle nozzle conveyed complex shock wave structures. Three-dimensional effects that resulted from the reasonable flow separation location were noted, and a trace of the transient pressure increase was observed, mismatched by a two-dimensional axi-symmetric analysis.

Study on the Retreatment Techniques for NOAA Sea Surface Temperature Imagery (NOAA 수온영상 재처리 기법에 관한 연구)

  • Kim, Sang-Woo;Kang, Yong-Q.;Ahn, Ji-Sook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.331-337
    • /
    • 2011
  • We described for the production of cloud-free satellite sea surface temperature(SST) data around Northeast Asian using NOAA AVHRR(Advanced Very High Resolution Radiometer) SST data during 1990-2005. As a result of Markov model, it was found that the value of Markov coefficient in the strong current region such as Kuroshio region showed smaller than that in the weak current. The variations of average SST and regional difference of seasonal day-to-day SST in spring and fall were larger than those in summer and winter. In particular, the distribution of the regional difference appeared large in the vicinity of continental in spring and fall. The difference of seasonal day-to-day SST was also small in Kuroshio region and southern part of East Sea due to the heat advection by warm currents.