• Title/Summary/Keyword: SST 난류모델

Search Result 122, Processing Time 0.025 seconds

NUMERICAL ANALYSIS OF INTERNAL VENTILATION SYSTEM IN AUTOMOTIVE PART FACTORY (자동차 부품공장 내부 환기 시스템의 수치해석적 연구)

  • Koh, D.H.;Lee, J.H.;Lim, S.;Kim, S.D.;Song, D.J.;Cha, S.E.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.32-38
    • /
    • 2007
  • The increasing demand on the comfortable working conditions in automotive part plant pushes the company to improve working environment of workers. we analyzed thermal flow of an automotive part factory by using CFX code. Internal working environment has been analyzed with/without ventilation system.

  • PDF

Mixing Characteristics in Supersonic Combustor with a Cavity (Cavity를 이용한 초음속 연소기 내의 혼합특성)

  • Oh Juyoung;Bae Young-Woo;Kim Ki-Su;Jeon Young-Jin;Lee Jae-Woo;Byun Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.359-363
    • /
    • 2005
  • In SCRamjet engine, combustion occurs in supersonic flow with airbreathing. SCRamjet is characterized by very short combustion time in combustor, so it is very important to be mixing the air and fuel in short duration. Several methods are suggested for mixing enhancement. Among these, cavity is selected to study for enhancement of mixing. The numerical simulation is performed in the case of freestream Mach number of 2.5 and cavity located in front of fuel jet injection. CFD-Fastran, commercial code with three-dimensional Navier-Stokes equation with the Menter SST turbulence model were used. The results are obtained validate experiment results for same condition. Therefore, the numerical results show the mixing enhancement characteristics with a cavity.

  • PDF

A Unified 3D Numerical Analysis of a Model Scramjet Engine with a Cavity Flame-Holder and Two Intake Side Walls (공동형 보염기를 갖는 모델 스크램제트 엔진의 흡입구 측면효과를 고려한 3차원 통합 유동해석)

  • Yeom, Hyo-Won;Kim, Sung-Jin;Sung, Hong-Gye;Kang, Sang-Hoon;Yang, Soo-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.590-593
    • /
    • 2009
  • To identify the detailed 3D flow characteristics of a model scramjet engine, a unified 3D numerical analysis was performed. The numerical domain of concern includes the entire flow path of the model scramjet engine extending from the intake to the nozzle exhaust. Turbulent models($k-{\omega}$ SST and low Reynolds number k-e with Sarkar model) were applied with comparison of experiment result. Intake side wall's effect on flow characteristics was analyzed in view points of flow quality at inlet duct and near the flame holder as well. The code is paralleled with multi-block feature using MPI(Massage Passing Interface) library to speed up the 3D calculation.

  • PDF

Post-Correlation Analysis for Shake Table Test of Square Liquid Storage Tank (정사각형 수조 진동대실험에 대한 상관해석)

  • Son, Il-Min;Kim, Jae-Min;Choi, Hyung-Suk;Baek, Eun-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a post-correlation analysis for shaking table test of square water storage tank is presented for the use of advances in earthquake-resistant design of liquid storage tank. For this purpose, the ANSYS CFX program is selected for the CFD analysis. Sensitivity analysis for resonant sloshing motion in terms of grid size and turbulence model suggested that (1) horizontal grid size as well as vertical grid size is a key variable in the sloshing analysis, and (2) the SST turbulence model is best for the sloshing analysis. Finally, correlation analyses for a non-resonant harmonic input and scaled earthquake excitation of the El Centro (1940) NS component are carried out using the grid and turbulence model established through the post-correlation analysis for the resonant motion. As a result, sloshing time histories by the CFD analysis agreed very well with the test results.

A Study on the y+ Effects on Turbulence Model of Unstructured Grid for CFD Analysis of Wind Turbine (풍력터빈 전산유체역학해석에서 비균일 그리드 무차원 연직거리의 난류모델에 대한 영향특성)

  • Lee, Kyoung-Soo;Ziaul, Huque;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This paper presents the dimensionless wall distance, y+ effect on SST turbulent model for wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine was used for the study, which the wind tunnel and structural test data has publicly available. The near wall treatment and turbulent characteristics have important role for proper CFD simulation. Most of the CFD development in this area is focused on advanced turbulence model closures including second moment closure models, and so called Low-Reynolds (low-Re) number and two-layer turbulence models. However, in many cases CFD aerodynamic predictions based on these standard models still show a large degree of uncertainty, which can be attributed to the use of the $\epsilon$-equation as the turbulence scale equation and the associated limitations of the near wall treatment. The present paper demonstrates the y+ definition effect on SST (Shear Stress Transport) turbulent model with advanced automatic near wall treatment model and Gamma theta transitional model for transition from lamina to turbulent flow using commercial ANSYS-CFX. In all cases the SST model shows to be superior, as it gives more accurate predictions and is less sensitive to grid variations.

Strongly Coupled Method for 2DOF Flutter Analysis (강성 결합 기법을 통한 2계 자유도 플러터 해석)

  • Ju, Wan-Don;Lee, Gwan-Jung;Lee, Dong-Ho;Lee, Gi-Hak
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • In the present study, a strongly coupled analysis code is developed for transonic flutter analysis. For aerodynamic analysis, two dimensional Reynolds-Averaged Navier-Stokes equation was used for governing equation, and ε-SST for turbulence model, DP-SGS(Data Parallel Symmetric Gauss Seidel) Algorithm for parallelization algorithm. 2 degree-of-freedom pitch and plunge model was used for structural analysis. To obtain flutter response in the time domain, dual time stepping method was applied to both flow and structure solver. Strongly coupled method was implemented by successive iteration of fluid-structure interaction in pseudo time step. Computed results show flutter speed boundaries and limit cycle oscillation phenomena in addition to typical flutter responses - damped, divergent and neutral responses. It is also found that the accuracy of transonic flutter analysis is strongly dependent on the methodology of fluid-structure interaction as well as on the choice of turbulence model.

Assessment of two-equation turbulent models in FLUENT for a turbulent heated pipe flow (열유속이 있는 난류 원관 유동에의 FLUENT의 2방정식 난류모델의 적용성 판단)

  • Moon C. M.;Baek S. G.;Park S. O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.158-163
    • /
    • 2003
  • This paper assesses the two-equation turbulence models available in a commercial code, FLUENT, for heat transfer in a turbulent heated pipe flow. In case of flow under $Re_D=10,000$, Standard $\kappa-\epsilon$ and Realizable $\kappa-\epsilon$ models overpredict the Nusselt number about $20\%$ compared with the experimental correlation, and RNG $\kappa-\epsilon$ model overpredicts about $30\%$ when the two-layer zonal method is employed. When wall function method is adopted, all $\kappa-\epsilon$ models show better predictions. Standard $\kappa-\omega$ and SST $\kappa-\omega$ models have the dependency on the first grid point ($0.3). As Reynolds number becomes high, the predictions of all $\kappa-\epsilon$ and $\kappa-\omega$ models are in a good agreement with the experimental correlation.

  • PDF

Effects of Baffle Structure Variation on Heat Transfer Performance in a Shell-Tube Heat Exchanger (배플 구조변경이 Shell-Tube 열교환기의 열전달성능에 미치는 영향)

  • Hou, Rong-Rong;Cho, Joeng-Kwon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3014-3021
    • /
    • 2015
  • Shell-tube heat exchanger is widely applied in industrial field by easily manufacturing as to various size and flow patterns. In this study, by changing baffle's cut direction, tilt angle and rotational angle as well as by using SST (Shear Stress Transport) $k-{\omega}$ turbulence model in ANSYS FLUENT v.14, the heat transfer rate and pressure drop characteristics of inner shell will be analyzed to improve heat transfer ability. As a result of analysis, heat transfer performance according to cut direction of baffle has been improved with vertical model B and angle $45^{\circ}$ model C than horizontal model A. In addition, the tilt $10^{\circ}$ of the baffle and rotational angle $0^{\circ}-90^{\circ}-180^{\circ}-270^{\circ}$ of model D showed better result in heat transfer rate and pressure drop.

EVALUATION OF ELLIPTIC BLENDING MODEL (Elliptic Blending Model의 평가)

  • Choi Seok-Ki;Kim Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.105-110
    • /
    • 2005
  • Evaluation of elliptic blending turbulence model (EBM) together with the two-layer model, shear stress transport (SST) model and elliptic relaxation model (V2-F) is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor by applying them to the experiment conducted at JNC. The algebraic flux model is used for treating the turbulent heat flux. There exist much differences between turbulence models in predicting the temporal variation of temperature. The V2-F model and the EBM better predict the steep gradient of temperature at the interface of thermal stratification, and the V2-F model and EBM predict properly the oscillation of temperature. The two-layer model and SST model fail to predict the temporal oscillation of temperature.

  • PDF

Comparative study of flow over a circular disk using RANS turbulence models (원형 디스크 주위 유동에 대한 RANS 유동해석 비교 연구)

  • Ryu, Nam Kyu;Kim, Byoung Jae
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.88-93
    • /
    • 2021
  • For a flow normal to a circular disk, the flow separation occurs from the edge of the disk and the flow recirculation zone exists behind the disk. Many existing studies conducted simulations of flow normal to a circular disk under low Reynolds numbers. Some studies performed LES or DES simulations under high Reynolds numbers. However, comparative study for different RANS models for high Reynolds numbers is very limited. This study presents numerical simulations of a flow normal to a circular disk using Realizable k-ε model and SST k-ω model. The recirculation bubble length and drag coefficient were compared with the experimental data. The SST k-ω model showed the excellent predictions for the recirculation bubble length and drag coefficient.