• Title/Summary/Keyword: SSR markers

Search Result 295, Processing Time 0.03 seconds

Analysis of Genetic Diversity and Population Structure of Buckwheat (Fagopyrum esculentum Moench) Landraces of Korea Using SSR Markers

  • Song, Jae-Young;Lee, Gi-An;Yoon, Mun-Sup;Ma, Kyung-Ho;Choi, Yu-Mi;Lee, Jung-Ro;Jung, Yeon-Ju;Park, Hong-Jae;Kim, Chung-Kon;Lee, Myung-Chul
    • Korean Journal of Plant Resources
    • /
    • v.24 no.6
    • /
    • pp.702-711
    • /
    • 2011
  • Buckwheat (Fagopyrum esculentum Moench), one of the minor crops grown in Korea belonging to the Polygonaceae family, is an annual crop widely cultivated in Asia, Europe, and America and has a character of outcrossing and self-incompatibility. The objective of this study was to analyze the genetic variability, phylogenetic relationships and population structure of buckwheat landraces of Korea using SSR markers. Ten microsatellite markers have been detected from a total of 79 alleles among the 179 buckwheat accessions were collected from Korea. The number of allele per marker locus ($N_A$) ranged from 2 (GB-FE-001, GB-FE-043 and GB-FE-055) to 31 (GB-FE-035) with an average of 7.9 alleles. GB-FE-035 was the most polymorphic with the highest PIC value 0.93. Major allele frequencies ($M_{AF}$) for the 10 polymorphic loci varied from 0.12 to 0.97 with a mean allele frequency of 0.57. The expected heterozygosity ($H_E$) values ranged from 0.05 to 0.94 with an average of 0.53. The observed heterozygosity ($H_O$) ranged from 0.06 to 0.92 with an average of 0.42. The overall polymorphic information contents (PIC) values ranged from 0.05 to 0.93 with an average of 0.48. The landrace accessions of buckwheat used in the present study were not distinctly grouped according to geographic distribution. The study concludes that the results revealed genetic differentiation was low according to the geographic region because of outcrossing and self-incompatibility. We reported that our analyses on the genetic diversity of common buckwheat cultivars of Korea were performed by using of microsatellite markers.

QTL Analysis of Soybean Seed Weight Using RAPD and SSR Markers

  • Chung, Jong-Il;Ko, Mi-Suk;Kang, Jin-Ho
    • Plant Resources
    • /
    • v.3 no.3
    • /
    • pp.184-193
    • /
    • 2000
  • Soybean [Glycine max (L.) Merr.] seed weight is a important trait in cultivar development. Objective of this study was to identify and confirm quantitative trait loci (QTLs) for seed weight variation in the F2 and F2:3 generations. QTLs for seed weight were identified in F2 and F2:3 generations using interval mapping (MapMaker/QTL) and single-factor analysis of variance (ANOVA). In the F2 plant generation (i.e., F3 seed), three markers, OPL9a, OPM7a, and OPAC12 were significantly (P<0.01) associated with seed weight QTLs. In the F2:3 plant row generation (i.e., F4 seed), five markers, OPA9a, OPG19, OPL9b, OPP11, and Sat_085 were significantly (P<0.01) associated with seed weight QTLs. Two markers, OPL9a and OPL9b were significantly (P<0.05) associated with seed weight QTLs in both generations. Two QTLs on USDA soybean linkage group C1 and R were identified in both F2 and F2:3 generations using interval mapping. The linkage group C1 QTL explained 16% of the variation in seed weight in both generations, and the linkage group R QTL explained 39% and 41% of the variation for F2 and F2:3 generation, respectively. The linkage group C2 QTL identified in F2:3 generation explained 14.9% of variation. Linkage groups C1, C2 and R had previously been identified as harbouring seed size QTLs. The consistency of QTLs across generations and populations indicates that marker-assisted selection is possible in a soybean breeding program.

  • PDF

Identification of Molecular Markers for Photoblastism in Weedy Rice

  • Lee, Hyun-Sook;Ahn, Sang-Nag;Sasaki, Kazuhiro;Chung, Nam-Jin;Choi, Kwan-Sam;Sato, Tadashi
    • Korean Journal of Breeding Science
    • /
    • v.42 no.2
    • /
    • pp.144-150
    • /
    • 2010
  • The objective of this study was to map gene/QTL for photoblastism in a weedy rice (photoblastic rice: PBR) using DNA markers. Light-induced effect on germination of seeds was compared among three accessions (Oryza sativa L.), PBR, Milyang 23 and Ilpum. Results showed that PBR seeds started to show photoblastism during seed development, different from Ilpum and Milyang 23. Frequency distribution of germination in the F4 lines from crosses between Ilpum and PBR and, Milyang 23 and PBR revealed bimodal distributions suggesting that photoblastism was controlled by a few genes. Bulked segregant analysis using $F_4$ populations derived from the above two crosses was conducted to identify gene/QTL for photoblastism. Two QTL were identified on chromosomes 1 and 12 explaining 11.2 and 12.8% of the phenotypic variance, respectively. Two QTL were further mapped between two SSR markers, RM8260 and RM246 on chromosome 1, and between RM270 and 1103 on chromosome 12. It is noteworthy that two QTL for photoblastism were colocalized with the QTL for seed dormancy reported in the previous QTL studies. The clustering of two genes for photoblastism and dormancy possibly indicates that these regions constitute rice phytochrome gene clusters related to germination. Because PBR has a low degree of dormancy, a pleiotropic effect of a single gene controlling dormancy and photoblastism can be ruled out. The linked markers will provide the foundation for positional cloning of the gene.

Analysis of Molecular Variance and Population Structure of Sesame (Sesamum indicum L.) Genotypes Using Simple Sequence Repeat Markers

  • Asekova, Sovetgul;Kulkarni, Krishnanand P.;Oh, Ki Won;Lee, Myung-Hee;Oh, Eunyoung;Kim, Jung-In;Yeo, Un-Sang;Pae, Suk-Bok;Ha, Tae Joung;Kim, Sung Up
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.321-336
    • /
    • 2018
  • Sesame (Sesamum indicum L.) is an important oilseed crop grown in tropical and subtropical areas. The objective of this study was to investigate the genetic relationships among 129 sesame landraces and cultivars using simple sequence repeat (SSR) markers. Out of 70 SSRs, 23 were found to be informative and produced 157 alleles. The number of alleles per locus ranged from 3 - 14, whereas polymorphic information content ranged from 0.33 - 0.86. A distance-based phylogenetic analysis revealed two major and six minor clusters. The population structure analysis using a Bayesian model-based program in STRUCTURE 2.3.4 divided 129 sesame accessions into three major populations (K = 3). Based on pairwise comparison estimates, Pop1 was observed to be genetically close to Pop2 with $F_{ST}$ value of 0.15, while Pop2 and Pop3 were genetically closest with $F_{ST}$ value of 0.08. Analysis of molecular variance revealed a high percentage of variability among individuals within populations (85.84%) than among the populations (14.16%). Similarly, a high variance was observed among the individuals within the country of origins (90.45%) than between the countries of origins. The grouping of genotypes in clusters was not related to their geographic origin indicating considerable gene flow among sesame genotypes across the selected geographic regions. The SSR markers used in the present study were able to distinguish closely linked sesame genotypes, thereby showing their usefulness in assessing the potentially important source of genetic variation. These markers can be used for future sesame varietal classification, conservation, and other breeding purposes.

Morphological characteristics, chemical and genetic diversity of kenaf (Hibiscus cannabinus L.) genotypes

  • Ryu, Jaihyunk;Kwon, Soon-Jae;Kim, Dong-Gun;Lee, Min-Kyu;Kim, Jung Min;Jo, Yeong Deuk;Kim, Sang Hoon;Jeong, Sang Wook;Kang, Kyung-Yun;Kim, Se Won;Kim, Jin-Baek;Kang, Si-Yong
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.416-430
    • /
    • 2017
  • The kenaf plant is used widely as food and in traditional folk medicine. This study evaluated the morphological characteristics, functional compounds, and genetic diversity of 32 kenaf cultivars from a worldwide collection. We found significant differences in the functional compounds of leaves from all cultivars, including differences in levels of chlorogenic acid isomer (CAI), chlorogenic acid (CA), kaempferol glucosyl rhamnoside isomer (KGRI), kaempferol rhamnosyl xyloside (KRX), kaemperitrin (KAPT) and total phenols (TPC). The highest TPC, KAPT, CA, and KRX contents were observed in the C22 cultivars. A significant correlation was observed between flowering time and DM yield, seed yield, and four phenolic compounds (KGRI, KRX, CAI, and TPC) (P < 0.01). To assess genetic diversity, we used 80 simple sequence repeats (SSR) primer sets and identified 225 polymorphic loci in the kenaf cultivars. The polymorphism information content and genetic diversity values ranged from 0.11 to 0.79 and 12 to 0.83, with average values of 0.39 and 0.43, respectively. The cluster analysis of the SSR markers showed that the kenaf genotypes could be clearly divided into three clusters based on flowering time. Correlations analysis was conducted for the 80 SSR markers; morphological, chemical and growth traits were found for 15 marker traits (corolla, vein, petal, leaf, stem color, leaf shape, and KGRI content) with significant marker-trait correlations. These results could be used for the selection of kenaf cultivars with improved yield and functional compounds.

Analysis of genetic diversity of cowpea landraces from Korea determined by Simple Sequence Repeats and establishment of a core collection

  • Lee, Jeongran;Baek, Hyung-Jin;Yoon, Mun-Sup;Park, Sang-Koo;Cho, Yang-Hee;Kim, Chang-Yung
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.369-376
    • /
    • 2009
  • Cowpea might have been introduced from China to Korea and cultivated for several hundred years but it has never been a staple food crop in Korea. In this study, genetic diversity of 492 Korean cowpea landrace accessions that have passport information was estimated using six SSR markers. The mean of Weir's gene diversity was 0.665 from all accessions investigated in the study. Cowpea gene diversity of six local provinces in Korea was ranged from 0.370 in accessions of Gangwon to 0.680 in Jeonra provinces. Low gene diversity of the cowpea genepool of Gangwon province was probably derived from relatively few introductions. Especially SSR markers VM36 and VM39 seem to be good markers to distinguish the Gangwon accessions from others by occurring at a specific locus with higher than 78% of allele frequency. Except for the Gangwon province with the low genetic diversity, gene diversity of cowpea accessions from other provinces was ranged from 0.600 to 0.680 indicating no big differences among provinces. Distribution pattern of the allele frequencies was similar among the other provinces. This may reveal that Korean farmers might exchange cowpea seeds easily with even their neighbors with geographical barriers. A core collection, 100 landraces, ca. 20% of base collection, was developed at the 70% of a similarity coefficient level using random sampling approaches after stratification of the entire landrace collection based on the phenetic dendrogram. The variability of SSR in the base and core collections of Korean cowpea landrace was compared by calculating Weir's gene diversity. The mean of Weir's gene diversity of the core was 0.707 while that of the base collection was 0.665. The higher diversity index in the core collection indicates that it maintains the initial variability and well represents the base collection. The core collection included one of determinate accession (IT 216155) and two of no branching type accessions (IT 103959 and IT 161024). The core collection could be used to guide more efficient management and utilization of the entire collection. This core collection should be revised periodically as additional accessions are collected and further characterization is conducted.