• Title/Summary/Keyword: SSOR method

Search Result 13, Processing Time 0.014 seconds

AN ASSESSMENT OF PARALLEL PRECONDITIONERS FOR THE INTERIOR SPARSE GENERALIZED EIGENVALUE PROBLEMS BY CG-TYPE METHODS ON AN IBM REGATTA MACHINE

  • Ma, Sang-Back;Jang, Ho-Jong
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.435-443
    • /
    • 2007
  • Computing the interior spectrum of large sparse generalized eigenvalue problems $Ax\;=\;{\lambda}Bx$, where A and b are large sparse and SPD(Symmetric Positive Definite), is often required in areas such as structural mechanics and quantum chemistry, to name a few. Recently, CG-type methods have been found useful and hence, very amenable to parallel computation for very large problems. Also, as in the case of linear systems proper choice of preconditioning is known to accelerate the rate of convergence. After the smallest eigenpair is found we use the orthogonal deflation technique to find the next m-1 eigenvalues, which is also suitable for parallelization. This offers advantages over Jacobi-Davidson methods with partial shifts, which requires re-computation of preconditioner matrx with new shifts. We consider as preconditioners Incomplete LU(ILU)(0) in two variants, ever-relaxation(SOR), and Point-symmetric SOR(SSOR). We set m to be 5. We conducted our experiments on matrices from discretizations of partial differential equations by finite difference method. The generated matrices has dimensions up to 4 million and total number of processors are 32. MPI(Message Passing Interface) library was used for interprocessor communications. Our results show that in general the Multi-Color ILU(0) gives the best performance.

Computation of Non-reacting and Reacting Flow-Fields Using a Preconditioning Method (예조건화기법을 이용한 유동장 및 반응유동장의 계산)

  • Ko Hyun;Yoon Woong-Sup
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.189-194
    • /
    • 2001
  • In this paper, non-reacting and reacting flowfields were computed using a preconditioned Navier-Stokes solver. The preconditioning technique of Merkle et al. and TVD scheme or Chakravarthy and Osher was employed and the results obtained using developed code have a good agreement with the previous results and experimental data. The preconditioned Wavier-Stokes equation set with low Reynolds number $\kappa-\epsilon$ equation and species continuity equations, are discretized with strongly implicit manner and time integrated with LU-SSOR scheme. For the purpose of treating unsteady problem the duel-time stepping scheme was employed. For the validation of the code in incompressible flow regime, steady driven square cavity flow was considered and calculation result shows reasonably good agreement with the result of incompressible code. Shock wave/boundary layer interaction problem was considered to show the shock capturing performance of preconditioned-TVD scheme. To validate unsteady flow, acoustic oscillation problem was calculated, and supersonic premix flame of $H_2$-air reaction problem which is calculated with turbulence model, 9-species/18-reaction step reaction model, shows reasonable agreement with the previous results. As a result, the preconditioning method has an advantage to calculate incompressible and compressible flow through one code and preconditioned solver easily developed from standard compressible code with minor efforts. But additional computational time and computer memory is required due to preconditioning matrix.

  • PDF

A Robust Preconditioner on the CRAY-T3E for Large Nonsymmetric Sparse Linear Systems

  • Ma, Sangback;Cho, Jaeyoung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.1
    • /
    • pp.85-100
    • /
    • 2001
  • In this paper we propose a block-type parallel preconditioner for solving large sparse nonsymmetric linear systems, which we expect to be scalable. It is Multi-Color Block SOR preconditioner, combined with direct sparse matrix solver. For the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with Multi-Color ordering. Since most of the time is spent on the diagonal inversion, which is done on each processor, we expect it to be a good scalable preconditioner. Finally, due to the blocking effect, it will be effective for ill-conditioned problems. We compared it with four other preconditioners, which are ILU(0)-wavefront ordering, ILU(0)-Multi-Color ordering, SPAI(SParse Approximate Inverse), and SSOR preconditioner. Experiments were conducted for the Finite Difference discretizations of two problems with various meshsizes varying up to 1024 x 1024, and for an ill-conditioned matrix from the shell problem from the Harwell-Boeing collection. CRAY-T3E with 128 nodes was used. MPI library was used for interprocess communications. The results show that Multi-Color Block SOR and ILU(0) with Multi-Color ordering give the best performances for the finite difference matrices and for the shell problem only the Multi-Color Block SOR converges.

  • PDF