• Title/Summary/Keyword: SSNTD-Calibration-System

Search Result 2, Processing Time 0.015 seconds

Calibration of CR-39 for Measurement of Radon in Air (공기중의 라돈 농도 측정을 위한 CR-39의 교정)

  • Park, Y.W.;Chang, S.Y.;Ha, C.W.;Ro, S.G.
    • Journal of Radiation Protection and Research
    • /
    • v.14 no.2
    • /
    • pp.18-22
    • /
    • 1989
  • In order to calibrate the CR-39 Solid State Nuclear Track Detector (SSNTD), a closed -circulation type SSNTD-Calibration-System containing a radon-cup with the Millipore filter has been set-up, and the tracks produced on the SSNTD were measured for the known amount of radon concentration. Calibration factor for the time integrated radon concentration as a function of the track density on CR-39 was estimated to be $0.24{\pm}0.09(pCi/l)\;day/(Tr/cm^2)$.

  • PDF

CONSTRUCTION OF AN ENVIRONMENTAL RADON MONITORING SYSTEM USING CR-39 NUCLEAR TRACK DETECTORS

  • AHN GIL HOON;LEE JAI-KI
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.395-400
    • /
    • 2005
  • An environmental radon monitoring system, comprising a radon-cup, an etching system, and a track counting system, was constructed. The radon cup is a cylindrical chamber with a radius of 2.2 cm and a height of 3.2 cm in combination with a CR-39 detector. Carbon is impregnated in the bodies of the detector chamber to avoid problem of an electrostatic charge. The optimized etching condition for the CR-39 exposed to a radon environment turned out to be a 6 N NaOH solution at 70^{\circ}$ over a 7hour period. The bulk etch rate under the optimized condition was $1.14{\pm}0.03\;{\mu}m\;h^{-1}$. The diameter of the tracks caused by radon and its progeny were found to be in the range of $10\~25\;{\mu}m$ under the optimized condition. The track images were observed with a track counting system, which consisted of an optical microscope, a color charged couple device (CCD) camera, and an image processor. The calibration factor of this system is obtained to be $0.105{\pm}0.006$ tracks $cm^2$ per Bq $m^{-3}$ d.