• Title/Summary/Keyword: SSMIS

Search Result 4, Processing Time 0.017 seconds

Estimation of Rainfall Intensity for MTSAT-1R Data using Microwave Rainfall (마이크로웨이브 강수량을 이용한 MTSAT-1R 위성의 강우강도 추정)

  • Jee, Joon-Bum;Lee, Kyu-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.511-525
    • /
    • 2010
  • Rainfall intensity was estimated using the MTSAT-1R infrared channels and the microwave satellite precipitation data. Brightness temperature of geostationary satellite is matched temporal and spatial to a variety of microwave satellite(SSM/I, SSMIS, AMSU-B, AMSRE, TRMM) precipitation data. Rainfall intensity was calculated by the look -up table using relationships of MTSAT-1R brightness temperature and microwave precipitation. Estimated rainfall is verified using by precipitation of TRMM satellite(TRMM3B42) and ground rainfall as AWS from Jul. 21 2008 to Jul. 25 2008. The results of rainfall estimated TRMM 2A12(TMI) that validated by AWS and TRMM3B42 precipitation are represented highly 0.38 and 0.61 by correlation coefficient, 5.81 mm/hr and 2.44 mm/hr by RMSE, 0.79 and 0.84 by POD and 0.65 and 0.87 by PC, respectively. Overall, estimated rainfall using by microwave satellite calculated 5 mm/hr or more comparing by AWS and 5 mm/hr or more comparing by TRMM3B42 precipitation, respectively. Validation results of correlation coefficient are shown series of TRMM 2A12, AMSRE, SSM/I, AMSU-B and SSMIS.

The Impact of Satellite Observations on the UM-4DVar Analysis and Prediction System at KMA (위성자료가 기상청 전지구 통합 분석 예측 시스템에 미치는 효과)

  • Lee, Juwon;Lee, Seung-Woo;Han, Sang-Ok;Lee, Seung-Jae;Jang, Dong-Eon
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.85-93
    • /
    • 2011
  • UK Met Office Unified Model (UM) is a grid model applicable for both global and regional model configurations. The Met Office has developed a 4D-Var data assimilation system, which was implemented in the global forecast system on 5 October 2004. In an effort to improve its Numerical Weather Prediction (NWP) system, Korea Meteorological Administration (KMA) has adopted the UM system since 2008. The aim of this study is to provide the basic information on the effects of satellite data assimilation on UM performance by conducting global satellite data denial experiments. Advanced Tiros Operational Vertical Sounder (ATOVS), Infrared Atmospheric Sounding Interferometer (IASI), Special Sensor Microwave Imager Sounder (SSMIS) data, Global Positioning System Radio Occultation (GPSRO) data, Air Craft (CRAFT) data, Atmospheric Infrared Sounder (AIRS) data were assimilated in the UM global system. The contributions of assimilation of each kind of satellite data to improvements in UM performance were evaluated using analysis data of basic variables; geopotential height at 500 hPa, wind speed and temperature at 850 hPa and mean sea level pressure. The statistical verification using Root Mean Square Error (RMSE) showed that most of the satellite data have positive impacts on UM global analysis and forecasts.

Analysis of Sea Route to the Jangbogo Antarctic Research Station by using Passive Microwave Sea Ice Concentration Data (수동 마이크로파 해빙 면적비 자료를 이용한 남극 장보고 과학기지로의 항해경로 분석)

  • Kim, Yeonchun;Ji, Yeonghun;Han, Hyangsun;Lee, Joohan;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.677-686
    • /
    • 2014
  • Sea ice covers wide area in Terra Nova Bay in East Antarctica where the Jangbogo Antarctic Research Station was built in 2014, which affects greatly on the sailing of an icebreaker research vessel. In this study, we analyzed the optimum sea route and sailable period of the icebreaker to visit the Jangbogo Antarctic Research Station by using sea ice concentration data observed by passive microwave sensors such as Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS) for the last decade, and by using sea route of the Araon, an icebreaker of Republic of Korea, from 2010 to 2012. It is found that Araon sailed in the route of sea ice concentration up to 78%. Sailing speed of the Araon decreased due to increasing sea ice concentration. However, Araon maintained the speed close to the average speed for the entire sailing period (~11 kn) in the route of sea ice concentration up to 70%. Therefore, we confirm that the Araon can sail typically in the route which shows sea ice concentration below 70%. We derived annually available sailing period in recent 10 years for the sea route of the Araon in 2010, 2011 and 2012, which is defined as the period showing sea ice concentration below 70% through the route. Maximum sailable period was analyzed to be 61 and 62 days for the route of the Araon in 2010 and 2011, respectively. However, the typical sailing in the routes was unavailable in some years because sea ice concentration was higher than 70% through the routes. Meanwhile, the sailable period for the routes of the Araon in 2012 was observed in every year, which was a minimum of 15 days and is a maximum of 89 days. Therefore, we could suggest that optimum route of icebreaker to visit the Jangbogo Antarctic Research Station is the route of the Araon in 2012. High resolution images from SAR or optical sensors are necessary to investigate sea ice condition near shoreline of Jangbogo research station due to several kilometers of low resolution of sea ice concentration.

Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

  • Lee, Seongsuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • The spatial size and variation of Arctic sea ice play an important role in Earth's climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).