• Title/Summary/Keyword: SSD Model

Search Result 64, Processing Time 0.019 seconds

Column-aware Transaction Management Scheme for Column-Oriented Databases (컬럼-지향 데이터베이스를 위한 컬럼-인지 트랜잭션 관리 기법)

  • Byun, Si-Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.125-133
    • /
    • 2014
  • The column-oriented database storage is a very advanced model for large-volume data analysis systems because of its superior I/O performance. Traditional data storages exploit row-oriented storage where the attributes of a record are placed contiguously in hard disk for fast write operations. However, for search-mostly datawarehouse systems, column-oriented storage has become a more proper model because of its superior read performance. Recently, solid state drive using MLC flash memory is largely recognized as the preferred storage media for high-speed data analysis systems. The features of non-volatility, low power consumption, and fast access time for read operations are sufficient grounds to support flash memory as major storage components of modern database servers. However, we need to improve traditional transaction management scheme due to the relatively slow characteristics of column compression and flash operation as compared to RAM memory. In this research, we propose a new scheme called Column-aware Multi-Version Locking (CaMVL) scheme for efficient transaction processing. CaMVL improves transaction performance by using compression lock and multi version reads for efficiently handling slow flash write/erase operation in lock management process. We also propose a simulation model to show the performance of CaMVL. Based on the results of the performance evaluation, we conclude that CaMVL scheme outperforms the traditional scheme.

A Feasibility study on the Simplified Two Source Model for Relative Electron Output Factor of Irregular Block Shape (단순화 이선원 모델을 이용한 전자선 선량율 계산 알고리듬에 관한 예비적 연구)

  • 고영은;이병용;조병철;안승도;김종훈;이상욱;최은경
    • Progress in Medical Physics
    • /
    • v.13 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • A practical calculation algorithm which calculates the relative output factor(ROF) for irregular shaped electron field has been developed and evaluated the accuracy of the algorithm. The algorithm adapted two-source model, which assumes that the electron dose can be express as sum of the primary source component and the scattered component from the shielding block. Original two-source model has been modified in order to make the algorithm simpler and to reduce the number of parameters needed in the calculation, while the calculation error remains within clinical tolerance range. The primary source is assumed to have Gaussian distribution, while the scattered component follows the inverse square law. Depth and angular dependency of the primary and the scattered are ignored ROF can be calculated with three parameters such as, the effective source distance, the variance of primary source, and the scattering power of the block. The coefficients are obtained from the square shaped-block measurements and the algorithm is confirmed from the rectangular or irregular shaped-fields used in the clinic. The results showed less than 1.0 % difference between the calculation and measurements for most cases. None of cases which have bigger than 2.1 % have been found. By improving the algorithm for the aperture region which shows the largest error, the algorithm could be practically used in the clinic, since one can acquire the 1011 parameter's with minimum measurements(5∼6 measurements per cones) and generates accurate results within the clinically acceptable range.

  • PDF

3D Models Retrieval Using Shape Index and Curvedness (형태 인덱스와 정규 곡률을 이용한 3차원 모델 검색)

  • Park, Ki-Tae;Hwang, Hae-Jung;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.33-41
    • /
    • 2007
  • Owing to the development of multimedia and communication technologies, multimedia data become a common feature of the information systems and are on the increase. This has led to the need of 3D shape retrieval systems that, given a query object, retrieve similar 3D objects. Therefore, shape descriptor required to describe a 3D object effectively and efficiently. In this paper, a new descriptor for 3D model retrieval based on shape information is proposed. The proposed descriptor utilizes the curvedness together with the shape index that provides local geometry information. The existing 3D Shape Spectrum Descriptor (3D SSD), which is defined as the histogram of shape index values, represents the characteristics of local shapes of the 3D surface. However, it does not properly represent the local shape characteristics, because many points with different curvedness may have the same shape index value. Therefore, we add a new feature that represents the degree of curvedness, thereby improving the discriminating power of the shape descriptor. We evaluate the performance of the proposed method, compared with the previous method. The experimental results have shown that the performance of retrieval has been improved by 23.6%.

Shadow Recovery for Column-based Databases (컬럼-기반 데이터베이스를 위한 그림자 복구)

  • Byun, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2784-2790
    • /
    • 2015
  • The column-oriented database storage is a very advanced model for large-volume data transactions because of its superior I/O performance. Traditional data storages exploit row-oriented storage where the attributes of a record are placed contiguously in hard disk for fast write operations. However, for search-mostly data warehouse systems, column-oriented storage has become a more proper model because of its superior read performance. Recently, solid state drive using flash memory is largely recognized as the preferred storage media for high-speed data analysis systems. In this research, we propose a new transaction recovery scheme for a column-oriented database environment which is based on a flash media file system. We improved traditional shadow paging schemes by reusing old data pages which are supposed to be invalidated in the course of writing a new data page in the flash file system environment. In order to reuse these data pages, we exploit reused shadow list structure in our column-oriented shadow recovery(CoSR) scheme. CoSR scheme minimizes the additional storage overhead for keeping shadow pages and minimizes the I/O performance degradation caused by column data compression of traditional recovery schemes. Based on the results of the performance evaluation, we conclude that CoSR outperforms the traditional schemes by 17%.