• Title/Summary/Keyword: SSCC(Sulfide stress corrosion cracking)

Search Result 8, Processing Time 0.02 seconds

Characteristics of Sulfide Stress Corrosion Cracking of High Strength Pipeline Steel Weld

  • Chang, Woong-Seong;Yoon, Byoung-Hyun;Kweon, Young-Gak
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.81-86
    • /
    • 2004
  • The sulfide stress corrosion cracking (SSCC) resistance of API X70 grade steel weldment has been studied using SSCC test in NACE TM-O177 method A. Also, microstructures and hardness distribution of weldment was investigated. The microstructure of SAW joint composed ferrite, pearlite and some MA constituent. Instead of hardening in CGHAZ, softening on the HAZ near base metal occurred. The low carbon TMCP type steel used for SAW showed softening behaviour in the HAZ adjacent to base metal, which was known to be closely related with the SOHIC (stress oriented hydrogen induced cracking). The SSC testing revealed that the API X70 SAW weld was suitable for sour service, satisfying the NACE requirements. By suppressing softening in the ICHAZ region, the SSCC resistance of low carbon TMCP steel welded joints could be more improved.

Study on the Welding Parameters of Steel Pipes for Higher Sulfide Stress Corrosion Cracking Resistance for Field Application

  • Baek, Kwang Ki;Lee, Ho il;Lee, Chul Hwan
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.154-160
    • /
    • 2004
  • The Sulfide Stress Corrosion Cracking (SSCC) resistance of structural steels is one of the critical concerns for the operators, material designers, and fabricators of oil-field equipment, especially treating sour gas (H2S) containing fluids. As far as its fabricators concerned, the systematic care of welding parameters should be taken to obtain comparable SSCC resistance of their weldment to that of its base material. In this respect, every different type of welding joint design for this use should be verified to be SSCC-proof with relevant test procedures. In this study, the welding parameters to secure a proper SSCC resistance of steel pipe's weldments were reviewed on the Welding Procedure Qualification Records (WPQR), which had been employed for actual fabrication of an offshore structure for oil and gas production. Based on this review, a guideline of welding parameters, such as, heat input, welding consumable for Y.S. 65 ksi class steel pipe material is proposed in terms of the NACE criteria for SSCC resistance.

A Study of Sulfide Stress Corrosion Cracking in Welded Steel Pipe (용접강관의 황화수소 응력부식균열에 관한 연구)

  • 박영록;김희진;강봉용
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.257-259
    • /
    • 2003
  • Sulfide Stress Corrosion Cracking(SSCC) of welded Steel pipe has been investigated. A specimens are stressed into the synthetic sea water saturated with H$_2$S. Therefore SSCC occur at the hardnest point. we are discusses the test methods used for laboratory corrosion testing of welded steel pipe and the results of test.

  • PDF

The sulfide stress corrosion cracking characteristics of multi-pass welded A106 Gr B steep pipe (A106 Gr B강 다층용접부의 황화물 응력부식균열 특성)

  • Lee, Gyu-Young;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.20-25
    • /
    • 2008
  • Sulfide stress corrosion cracking (SSCC) of materials exposed to oilfield environment containing hydrogen sulfide ($H_2S$) has been recognized as a materials failure problem. Laboratory data and field experience have demonstrated that extremely low concentration of $H_2S$ may be sufficient to lead to SSC failure of susceptible materials. In some cases, $H_2S$ can act synergistically with chlorides to produce corrosion and cracking failures. SSC is a form of hydrogen embrittlement that occurs in high strength steels and in localized hard zones in weldment of susceptible materials. In the heat-affected zones adjacent to welds, there are often very narrow hard zones combined with regions of high residual stress that may become embrittled to such an extent by dissolved atomic hydrogen. On the base of understanding on sulfide stress cracking and its mechanism, SSC resistance for the several materials, those are ASTM A106 Gr B using in the oil industries, are evaluated.

  • PDF

Evaluation of HIC/SSCC Resistance for API-X70 Pipe Manufactured by JCO Bending Process and SA Welding (JCO 밴딩과 SA용접으로 제조된 API-X70급 강관의 HIC/SSCC 저항성 평가)

  • Ryoo, Hoi-Soo;Kim, Hee Jin;Lee, Dong-Eon
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.1-6
    • /
    • 2014
  • This study aims at manufacturing SA welded API-X70 line-pipe with sour gas resistance. A pipe was manufactured by JCO bending process and SA welding using the API-X70 plate guaranteed HIC resistance. SA welded pipe was expanded in order to reduce the residual stress. The evaluation of a pipe for resistance to HIC and SSCC were performed by the RS D 0004 and RS D 0005 standards. For verification that a pipe has acceptable resistance to HIC, fullscale test was carried out. Results showed no cracking for the HIC and SSCC.

A study of the sulfide stress corrosion cracking characteristic of A106 Gr B steep pipe weldment (황화수소환경에서 A106 Gr-B 강 용접부의 응력부식균열 특성 평가)

  • Lee, Gyu-Young;Park, Kwang-Jin;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.114-119
    • /
    • 2007
  • Sulfide stress cracking (SSC) of materials exposed to oilfield environment containing hydrogen sulfide $(H_{2}S)$ has been recognized as a materials failure problem. Laboratory data and field experience have demonstrated that extremely low concentration of $H_{2}S$ may be sufficient to lead to SSC failure of susceptible materials. In some cases, $(H_{2}S)$ can act synergistically with chlorides to produce corrosion and cracking failures. SSC is a form of hydrogen embrittlement that occurs in high strength steels and in localized hard zones in weldment of susceptible materials. In the heat-affected zones adjacent to welds, there are often very narrow hard zones combined with regions of high residual stress that may become embrittled to such an extent by dissolved atomic hydrogen. On the base of understanding on sulfide stress cracking and its mechanism, SSC resistance for the several materials, those are ASTM A106 Gr B using in the oil industries, are evaluated.

  • PDF

The Relationship Between Hydrogen Trapping Behavior and SSCC Suceptibility of API X60/65 Grade Steels

  • Lee, Jae Myung;Kim, Jin Suk;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.109-116
    • /
    • 2003
  • It is well known that SSCC (sulfide stress corrosion cracking) is caused by drastic ingression of hydrogen during the service and accumulation of hydrogen near the potential crack initiation site in the material. It is important to characterize the hydrogen trapping behavior to evaluate the service performance of the high strength pipeline steels. In this study. the relationship between the hydrogen trapping behavior and SSCC susceptibility is evaluated in terms of alloy composition, microstructure and carbide behavior. The hydrogen trapping behavior was measured by electrochemical hydrogen permeation test cell (Devanathan cell). The SSCC susceptibility is evaluated by constant extension rate test and constant strain lest method. The hydrogen trapping behavior is affected greatly by microstructure and nature of carbide particles. The fine TiC, and NbC in the matrix of ferritic structure acts as strong irreversible trap sites whereas the bainitic structure acts as reversible trap site. The SSCC susceptibility is closely related to not only the hydrogen trapping behavior but also the loading condition. As the activity of reversible trap site increases, SSCC susceptibility decreases under static loading condition below yield strength, whereas SSCC susceptibility increases under dynamic loading condition or above yield strength. As the activity of irreversible trap site increases. SSCC susceptibility increases regardless of loading condition. It is cased by the mixed effect of dislocation on hydrogen diffusion and trapping behavior.

철강제의 황화물 응력부식

  • 권영각
    • Journal of the KSME
    • /
    • v.30 no.2
    • /
    • pp.155-162
    • /
    • 1990
  • 원유나 각종 석유 제품을 취급하는 구조물 또는 설비들의 부식 균열현상은 이미 오래 전부터 보 고되어 왔으며, 이는 주로 석유나 LPG 등에 포함되어 있는 H/SUB 2/S에 의한 황화물 응력부식 (SSCC:sulfide stress corrosion cracking)으로 널리 알려져 있다(1,2). SSCC에 의한 균열 현상은 일반 저강도 철강재에서는 발생하지 않으며 주로 항복강도가 500MPa 이상의 강재에서 많이 나타 난다. 특히, 구조물이나 설비제작 과정에서 반드시 있게되는 용접부는 SSCC에 아주 민감한 부분 으로써, 대부분의 SSCC 균열이 용접 열영향부(HAZ:heat affected zone)에서 나타나고 있다. 이는 용접부의 미세조직이 모재와 달라 국부적으로 높은 경도를 갖는 부분이 있기도 하고, 또한 운전 조건으로는 만족되지 않는 응력부식 조건이 용접 잔류응력에 의해 만족될 수 있기 때문이기도 하다. 본 글에서는 이러한 SSCC에 의한 균열 특성을 SSCC기구 (SSCC mechanism)와 함께 석유화학 설비재료로 많이 사용되는 철강재를 대상으로 고찰해 보고자 한다.

  • PDF