• Title/Summary/Keyword: SS (suspended solid)

Search Result 166, Processing Time 0.024 seconds

Evaluation of Downflow Granular Media Filtration for Stormwater Treatment (강우유출수에 의한 비점오염 저감을 위한 하향류식 입상여과 효율 평가)

  • Lim, Chan-Su;Kim, Do-Gun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.684-693
    • /
    • 2012
  • The stormwater runoff from the increasing paved roads and vehicles resulted in the increase in the pollutants load to adjacent water bodies. The granular media filtration facilities are the most widely adopted to minimize the non-point source pollution from motorways. It is essential to consider the severe variation of hydraulic condition, suspended solid (SS) characteristics, and the medium characteristics for stormwater management filter. In this study, different types of media, including sand, were tested and the performance of downflow sand filters was investigated under various linear velocity and influent solid particle size. Results showed that the best medium is the coarse sand with large grain size, which showed the specific SS removal before clogging of more than $8.498kg/m^2$, the SS removal of higher than 95%, and minimum head loss. Linear velocity did not affect the total solid removal, while the performance was improved when fine solid was introduced. It is suggested that the life of a downflow sand filter bed can be extended by deep bed filtration when influent particles are fine. However, the captured particles can be washed out after a long period of operation.

Proposal for Estimation Method of the Suspended Solid Concentration in EIA (환경영향평가에서 부유사 농도 추정 방법 제안)

  • Choo, Tai Ho;Kim, Young Hwan;Park, Bong Soo;Kwon, Jae Wook;Cho, Hyun Min
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.30-36
    • /
    • 2017
  • SS(Suspended Solid) concentration by soil erosion into river at normal and flood season should be measured. However, to present the variation of SS due to various development project such as EIA(Environmental Impact Assessment), River Master Plan, and so on, it is necessary to estimate not measure SS, but there are not exist how to estimate SS. In the present study, therefore, we propose the hydrologic method of estimating SS concentration using the results of particular frequency flood discharge and sediment discharge by RUSLE method. SS consists of silty and clay soil and colloid particle etc. However, in the present study, silty and clay soils of sediment discharge except send set up SS standards. The flow discharge to estimate SS concentration are 1~2 years for normal season, 30~100 years for flood season. Meanwhile, analysis software for probable rainfall uses Fard2006, probable rainfalls under 2-year frequency are estimated using rainfall data and frequency factor of Gumbel distribution. The results of estimating SS concentration using runoff volume by sediment and flow discharges of silty and cray soils as above method show that reliable level of SS concentration is considered in predevelopment of natural condition and under development of barren condition. Especially, SS concentration takes notice that the value of sediment discharge makes a huge difference according to channel slope, it was confirmed that the value obtained by dividing the SS concentration by the channel slope is relatively constant even though the topographical factors are different. Therefore, if the present study will be proceeded for various watersheds, it will be developed as estimation method of SS concentration.

Effect of separation walls on reduction of suspended solids loading in a combined sewer system (합류식 하수관거내 우오수분리벽 설치에 따른 부유물질 제어효과)

  • Kwon, Chungjin;Lim, Bongsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.787-796
    • /
    • 2012
  • The purpose of this study is to investigate CSOs(combined sewer overflows) control in the combined sewer with/without separation wall. There is the high correlation between sewage velocity and suspended solid(SS) loading in the sewer without it. The SS/BOD ratio was about 3 times in the area with it, while it was about 5 times in the area without it. Therefore, the accumulated deposit within the sewer has influenced high SS loading in the sewer without it. This study showed that the separation wall installed acquired an acceptable efficiency in controlling the accumulated deposit in the combined sewer. According to this study, the BOD control effect was about 38 % in the sewer with the separation wall, whereas it showed about 24 % in the sewer without it. In this case, it was anticipated that the high pollutant control effect would be expected if the separation wall was installed in the combined sewer.

Optimizing of Coagulation and Solid-Liquid Separation Conditions Using Aluminum Sulfate and Poly-Aluminum Chloride Coagulants from Brine Wastewater Discharged by the Epoxy-resin Process (에폭시수지 공정에서 발생되는 고염 폐수로부터 황산알루미늄과 PAC 응집제를 이용한 응집/고액분리 조건 최적화)

  • Lee, Chang-Han;Kim, Yu-Jin;Moon, Sung-Hyun;Kwon, Sung-Hun;Ahn, Kab-Hwan
    • Journal of Environmental Science International
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, solid-liquid separation conditions for coagulation and sedimentation experiments using inorganic coagulant (aluminum sulfate and Poly-Aluminum Chloride (PAC)) were optimized with brine wastewater discharged by the epoxy-resin process. When the turbidity and suspended solid (SS) concentration in raw wastewater were 74 NTU and 4.1 mg/L, respectively, their values decreased the lowest in a coagulant dosage of 135.0 - 270.0 mg Al3+/L. The epoxy resin was re-dispersed in the upper part of wastewater treated above 405.0 mg Al3+/L. The removal efficiencies of turbidity and SS via dosing with aluminum sulfate and PAC were evaluated at initial turbidity and SS of 74 - 630 NTU and 4.1 - 38.5 mg/L, respectively. They increased most in the range from 135.0 - 270.0 mg Al3+/L. The solid-liquid separation condition was quantitatively compared to the correlation of SS removal efficiency between the coagulant dosage and SS concentration based on the concentration of aluminum ions. The empirical formula, R = beaD, shows the relationship between SS removal efficiency (R) and coagulant dosage (D) at 38.5 mg/L; it produced high correlation coefficients (r2) of 0.9871 for aluminum sulfate and 0.9751 for PAC.

Distribution of Pyrethroid Insecticides in a Nursery Drainage Channel

  • Lee, Sang-Jin;Shin, Hyun-Moo
    • Journal of Environmental Science International
    • /
    • v.12 no.8
    • /
    • pp.891-896
    • /
    • 2003
  • The objectives of this study wre to investigate the effects of two synthetic pyrethroids, bifenthrin(BF) and permethrin(PM), in runoff and to evaluate the effects of suspended solids (SS) in the transport of pyrethroid along the drainage channel. Monitoring of BF and PM was conducted with the runoffs as well as in sediments existing along the drainage channel at a nursery site located in southern California, USA. This study also suggests Best Management Practices (BMPs) to alleviage the pollution caused by heavy usage of pyrethroid insecticides at nursery sites. Due to a high affinity to solid particles of pyrethroid insecticides, the concentrations of BF and PM were proportional to the SS contents along the drainage channel. This study suggests that alleviation of pyrethroids existing in runoffs could be controlled by the removal of suspended solids in runoffs and potential implications of current drainage channels for mitigation of pesticides associated with runoffs.

Analysis of relationship between SS, COD, and T-P in rural area (농촌유역에서의 SS, COD 및 T-P간의 상관관계 분석(지역환경 \circled1))

  • 함종화;윤춘경
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.525-530
    • /
    • 2000
  • The loss of soil and nutrients from land surfaces to surface water supplies continues to be an important source of nonpoint source pollution. This study was initiate to develop an empirical relationship among the contaminants. SS, COD, T-N, and T-P were collected from agricultural surface water quality studies carried out in Hwasung-Gun, Kyonggi-Do. Correlation analysis, regression analysis, and reliability analysis were conducted. The regression equations were developed between SS and COD, SS and T-P, COD and T-P, and the resulting r$\^$2/ value was over 0.78. The regression equation enables a reasonable prediction of phosphorus concentration and COD concentration for known suspended solid concentration.

  • PDF

Assessment of Climate Change Impact on Highland Agricultural Watershed Hydrologic Cycle and Water Quality under RCP Scenarios using SWAT (SWAT모형을 이용한 RCP 기후변화 시나리오에 따른 고랭지농업유역의 수문 및 수질 평가)

  • Jang, Sun Sook;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.41-50
    • /
    • 2017
  • The purpose of this study were to evaluate the effect of best management practices (BMPs) of Haean highland agricultural catchment ($62.8km^2$) under future climate change using SWAT (Soil and Water Assessment Tool). Before future evaluation, the SWAT was setup using 3 years (2009~2011) of observed daily streamflow, suspended solid (SS), total nitrogen (T-N), and total phosphorus (T-P) data at three locations of the catchment. The SWAT was calibrated with average 0.74 Nash and Sutcliffe model efficiency for streamflow, and 0.78, 0.63, and 0.79 determination coefficient ($R^2$) for SS, T-N, and T-P respectively. Under the HadGEM-RA RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios, the future precipitation and maximum temperature showed maximum increases of 8.3 % and $4.2^{\circ}C$ respectively based on the baseline (1981~2005). The future 2040s and 2080s hydrological components of evapotranspiration, soil moisture, and streamflow showed changes of +3.2~+17.2 %, -0.1~-0.7 %, and -9.1~+8.1 % respectively. The future stream water quality of suspended solid (SS), total nitrogen (T-N), and total phosphorus (T-P) showed changes of -5.8~+29.0 %, -4.5~+2.3 %, and +3.7~+17.4 % respectively. The future SS showed wide range according to streamflow from minus to plus range. We can infer that this was from the increase of long-term rainfall variability in 2040s less rainfalls and 2080s much rainfalls. However, the results showed that the T-P was the future target to manage stream water quality even in 2040s period.

A Study of Sewage Treatment with a Self-Cleaning Filtration Unit (자기세정 여과 반응장치를 이용한 하수처리에 관한 연구)

  • Mo, Sung-Young;Lee, Pul-Eip;Kim, Bum-Su;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, sewage was fed with up flow direction into a reactor equipped with a screw to circulate media that had lower specific gravity than water. It was observed that the media in the reactor could be circulated by a screw with reverse flow of the sewage feeding from the top to the bottom direction. Under these conditions, concentrations of inflow and outflow pollutants were measured at the filtration unit. Experimental results revealed stable circulation of the media with a screw in the reactor. Circulation of the media in the reactor showed more efficiency in removing the pollutants (particulate matters and organics) than no circulation. The maximum removal efficiencies of suspended solid (SS), chemical oxygen demand (CODmn), and total phosphorus (T-P) were 96%, 72% and 65%, respectively. Improvements for SS, CODmn and T-P removals with circulation of media were 52.38%, 43.14% and 118.12% respectively, compared to those without circulation.

Study to enhance the settleability of deep aeration tank MLSS (Mixed Liquor Suspended Solid) by air sparging (탈기에 의한 심층포기 호기조 MLSS (Mixed Liquor Suspended Solid) 침전성 향상 방안 연구)

  • Jisoo Han;Jeseung Lee;Byonghi Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.3
    • /
    • pp.165-175
    • /
    • 2024
  • The dissolved air at the bottom layer of the deep aeration tank transforms into fine gas bubbles within the MLSS (Mixed Liquor Suspended Solid) floc when exposed to the atmosphere. MLSS floc flotation occurs when MLSS from the deep aeration tank enters the secondary clarifier for solid-liquid separation, as dissolved air becomes fine air within the MLSS floc. The floated MLSS floc causes a high SS (Suspended Solid) concentration in the secondary effluent. The fine air bubbles within the MLSS floc must be removed to achieve stable sedimentation in the secondary clarifier. Fine bubbles within the MLSS floc can be removed by air sparging. The settleability of MLSS was measured by sludge volume indexes (SVIs) after air sparging MLSS taken at the end of the deep aeration tank. MLSS settling tests were performed at MLSS heights of 200, 300, 400, and 500 mm, and compressed air was fed at the bottom of the settling column with air flow rates of 100, 300, and 500 ml/min at each MLSS height, respectively. Also, at each height and air flow rate, air was sparged for 3, 5, and 7 minutes, respectively. SVI was determined for each height, air flow rate, and sparging time, respectively. Experimental results showed that a 300 mm MLSS height, 300 ml/min air flow rate, and 3 minutes of sparging time were the least conditions to achieve less than 120 ml/g of SVI, which was the criterion for good MLSS settling in the secondary clarifier.

Environmental Pollutants Drained From Highway Pavement Road

  • Takemura, Shinsaku;Goto, Naoshige;Mitamura, Osamu
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.58-61
    • /
    • 2005
  • Environmental polluting materials from road surface drainage are a significant nonpoint source influenced to the eutrophication of lake and ecosystems with a transport development in recent years. To elucidate the discharge characteristics, the changing patterns in concentrations of polluting materials such as suspended solid (SS), chemical oxygen demand (COD), nitrogenous and phosphorus nutrients in drainage waters, were investigated during rainfall. Load variation of COD concentration in drainage water samples was closely related to that of SS concentration. This indicates that SS contained a greater part of organic matter. A quite difference between the past pavement and the new well-drainage pavement system was observed in the concentrations of SS and COD in drainage waters. Appreciable concentrations of nitrite and nitrate were determined in drainage waters. The present results indicate that the drainage water from road surfaces is a significant nonpoint source, and that the well-drainage pavement system introduced to skid prevention has an effect on the decreases of pollutants.