• Title/Summary/Keyword: SS(Stainless steel)

Search Result 156, Processing Time 0.049 seconds

An in vitro evaluation of the accuracy of four electronic apex locators using stainless-steel and nickel-titanium hand files

  • Gehlot, Paras Mull;Manjunath, Vinutha;Manjunath, Mysore Krishnaswamy
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.6-11
    • /
    • 2016
  • Objectives: The purpose of this in vitro study was to evaluate the accuracy of working length (WL) determination of four electronic apex locators (EALs), namely, Root ZX (RZX), Elements diagnostic unit and apex locator (ELE), SybronEndo Mini Apex locator (MINI) and Propex pixi (PIXI) using Stainless steel (SS) and nickel-titanium (NiTi) hand files. The null hypothesis was that there was no difference between canal length determination by SS and NiTi files of 4 EALs. Materials and Methods: Sixty extracted, single rooted human teeth were decoronated and the canal orifice flared. The actual length (AL) was assessed visually, and the teeth were embedded in an alginate model. The electronic length (EL) measurements were recorded with all four EALs using SS and NiTi files at '0.5' reading on display. The differences between the AL and EL were compared. Results: The results obtained with each EAL with SS and NiTi files were compared with AL. A paired sample t test showed that there was a statistical significant difference between EAL readings with SS and NiTi files for RZX and MINI (p < 0.05). The accuracy of RZX, ELE, MINI and PIXI within ${\pm}0.5 mm$ of AL with SS/NiTi files were 93.3%/70%, 90%/91.7%, 95%/68.3%, and 83.3%/83.3%, respectively. Conclusions: The results of this study indicate that Root ZX was statistically more accurate with NiTi files compared to SS files, while MINI was statistically more accurate with SS files compared to NiTi files. ELE and PIXI were not affected by the alloy type of the file used to determine WL.

A Comparison of Stainless Steel K-file, Profile .04, and Quantec LX Instruments to Shape Curved Root Canals in vitro (Stainless Steel K-file, Profile .04와 Quantec LX를 이용한 만곡 근관 형성후의 근관형태의 변화에 관한 비교연구)

  • Lim, Kyung-A;Yoon, Soo-Han
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.133-143
    • /
    • 2000
  • 목 적: 통상적인 근관성형 과정에서 근관형태의 직선화 경향을 발견할수 있으며 그 결과 만곡이 심한 근관에서 이상적인 근관 형태를 얻기가 어려움으로 인해 이를 극복하기 위한 많은 기구들과 근관 성형법들이 개선되었고 소개되었다. 본 연구에서는 수통형 Stainless Steel K-file, Niti 엔진 구동형 Profile .04와 Quantec LX file를 이용하여 만곡 근관의 성형 후 최종 근관 형태를 비교하고 평가하고자 한다. 방 법: 본 실험은 Bramante등의 방법을 변형하여 술 전의 근관 형태와 술 후의 근관 형태를 비교하였다. Schneider의 방법에 따라 $12^{\circ}$에서 $68^{\circ}$ 이내에 만독도를 가진 45개의 발거된 상하악 대구치의 근심근관들을 선택하여 15개씩 3개의 군으로 나누고 알루미늄으로 제작된 mold에 투명한 교정용 레진으로 매몰하였다. 근첨에서 2.5, 5, 8mm 지점에서 절단하고 각 mold에 재조립한 후 다음과 같이 근관 성형을 시행하였다. 제 1 군은 SS K-file를 이용하여 Step-back 방법; 제 2 군은 NiTi 엔진 구동형인 Profile .04 ; 제 3 군은 NiTi 엔진 구동형인 Quantec LX file로 근관 성형하였다. 술 전과 술 후에, 각 시편들을 입체 현미경으로 사진 촬영하여 근관 중심 위치 이동률, 근관성형 후 면적과 모양, 잔존 상아질의 최 소 두께를 Sigma scan / image software program으로 계산하고 One way ANOVA로 통계적 유의성을 검증하였다. 결 론: 1. Profile .04와 Quantec LX는 SS K-file보다 근관성형시 근관의 본 형태를 유지하는 경향이 있었으나 통계적으로 유의성이 없었다(p>0.05). 2. 근관 성형 후 면적은 Profile .04 엔진 구동형 NiTi file를 이용한 군이 다른 군과 비해 가장 적었으나 통계적으로 유의성이 없었다(p>0.05). 2. 모든 방법들은 같은 부위에서 같은 방향으로 전이되는 양상을 보였다. 즉, 근단부에서는 바깥쪽으로, 중앙부에서는 안쪽으로 전이하려는 경향이 있었다. 그러나, 치관부에는 그러한 법칙이 적용되지 않아 전이되는 양상이 안쪽이나 바깥쪽으로 구별되지 않게 일어났다. 3. 술 후에 근관의 모양은 원형, 타원형, 불균일한 형태들이 다양하게 나타났지만, Profile .04와 Quantec LX를 사용했을 때 주로 원형 형태의 근관을 보여주었으며 Stainless Steel K-file은 타원형이나 불균일한 근관 형태를 보였다.

  • PDF

Application of Minimum Commitment Method for Predicting Long-Term Creep Life of Type 316LN Stainless Steel (Type 316LN 스테인리스강의 장시간 크리프 수명 예측을 위한 최소구속법의 적용)

  • Kim, Woo-Gon;Yin, Song-Nan;Ryu, Woo-Seog;Lee, Chan-Bock
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.118-124
    • /
    • 2008
  • Abstract: A minimum commitment method(MCM) was applied to predict the long-term creep rupture life for type 316LN stainless steel(SS). Lots of the creep-rupture data for the type 316LN SS were collected through world-wide literature surveys and the experimental data of KAERI. Using these data, the long-term creep rupture life above ${10}^5$ hour was predicted by means of the MCM. In order to obtain the most appropriate value for the constant A being used in the MCM equation, trial and error method was used for the wide ranges from -0.12 to 0.12, and the best value was determined by using the coefficient of determination, $R^2$ which is a statistical parameter. A suitable value for the A in type 316LN stainless steel was found to be at -0.02 ~ -0.05 ranges. It is considered that the MCM will be superior in creep-life prediction to commonly-used timetemperature parametric method, because the P(T) and G($\sigma$) functions are determined from the regression method based on experimental data.

A Study on the IR Drop in Crevice of AISI 304 Stainless Steel by Temperature Variation (온도변화에 따른 AISI 304SS의 틈내 전위강하에 관한 연구)

  • 나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.872-878
    • /
    • 2003
  • As the results of recent industrial development, many industrial plants and marine structures are exposed to severe corrosion environment than before. Especially, under the wet environment, crevice corrosion damage problems necessarily occur and encourage many interests to prevent them. In this study, the electrochemical polarization test was carried out to study characteristics of crevice corrosion for AISI 304 stainless steel in various solution temperatures. The results are as follows ; 1) as the solution temperature increased in IN $\textrm{H}_2\textrm{SO}_4$, the passive current density and critical current density were increased, whereas corrosion potential and break down potential were nearly constant, 2) as the solution temperature increased. the induced time for initiation of crevice corrosion was shortened. 3) The potential range in the crevice was -220mV/SCE to -380mV/SCE according to the distance from the crevice opening, which is lower than that of external surface of -200mV/SCE.

Biochemical Safety of Duplex Stainless Steel Acupuncture Needle (Duplex Stainless Steel(DSS) 침의 생화학적 안전성)

  • Yook, Keun-Yung;Lee, Seung-Ho;Kim, Young-Kon;Lee, Seung-Heon;Hong, Sang-Min;Lim, Sabina
    • Journal of Acupuncture Research
    • /
    • v.24 no.6
    • /
    • pp.195-206
    • /
    • 2007
  • Objectives : The aim of this study is to investigate the safety of Acupuncture needles made from duplex stainless steel. Methods : In order to check the safety concern of the DSS Acupuncture needle, we employed biochemical measures, DSS and SS304 Acupuncture needles were tested for pH level, heavy metals and UV absorbance spectrum along with cytotoxicity and hemolysis. As a guideline, we have referred to the 'standards for acupuncture needles', 'standards for disposable needles' and 'standards and experimental procedures for stents' for the Korean Food & Drug Administration(KFDA). Results & Conclusions : The DSS Acupuncture needle extract satisfied these requirements. There was no significant difference between the DSS and SS304 Acupuncture needle extract. In conclusion, the DSS Acupuncture needle displayed biochemical safety.

  • PDF

Influence Regularity of Aluminum, Copper and Stainless-steel on SF6 PD Decomposition Characteristics Components

  • Zeng, Fuping;Luo, Jing;Tang, Ju;Zhou, Qian;Yao, Qiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.295-301
    • /
    • 2017
  • $SF_6$ decomposition products can be used to detect partial discharge (PD), but the metal materials in a PD area can significantly affect $SF_6$ decomposition characteristics. Disregarding the effect of metal materials on such characteristics inevitably result in certain errors when using them to diagnose the internal insulation faults of gas-insulated switchgears. This paper investigates the influence regularity on the main stable decomposition components of $SF_6$ (namely $SO_2F_2$ and $SOF_2$) of the commonly metal materials uesd in GIS, such as aluminum (Al), copper (Cu) and stainless steel (SS). Firstly, an experimental platform is constructed to simulate $SF_6$ decomposition under a PD area, and the influence regularities of Al, Cu and SS on the concentration, formation rate and saturation time of $SO_2F_2$ and $SOF_2$ are obtained. Secondly, the influence mechanism of Al, Cu and SS are preliminary explored combined with the chemical activity of the metal materials.

A Study on Creep Crack Growth Properties of 308 SS for FFS Evaluation of High Temperature Components (고온설비의 FFS평가를 위한 308 스테인리스강의 크리프 균열성장 재료물성에 대한 연구)

  • Lee, Kyung-Yong;Baek, Un-Bong;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.5-10
    • /
    • 2002
  • For fitness-for-service evaluation of high temperature plant components with defects, crack growth life must be assessed properly as indicated in the recent draft of API 579 code. Type 308 stainless steel has been widely used as a field weld material in the petrochemical industry. In this study, creep crack data of type 308 stainless steel are collected and re-analyzed using $C_t$ as a characterizing fracture parameter. A unique da/dt versus $C_t$ relationship was obtained despite of difference of creep deformation constant of the reviewed materials and specimen geometry of the tested specimens. The obtained results can be employed for crack growth life assessment and fitness-for-service evaluation for the cracks in high temperature components. It is also argued that since the effect of creep properties and other material variability on the creep crack growth behavior would be minor the obtained model may be applied for most of the 308 stainless steels.

A study on electrochemical protection diagrams of steel in nitric and sulfuric acid solutions (질산과 황산 용액중의 철강의 전기방식도에 관한 연구)

  • 전대희;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.43-63
    • /
    • 1989
  • Various kinds of corrosion prevention methods have been developed. It is known that the method of electrochemical protection is more effective and economical than any other method on the large scale metal structures in corrosive solutions. Strong acid solutions such as nitric and sulfuric acid solutions are often used in industries, and the expensive stainless steel is almost exclusively used for the equipment that comes in contact with such acid solutions. However, it is more reasonable that carbon steel is used rather than stainless steel depending upon concentration of those acid solutions from the economical viewpoint. In this study, the typical strong acid solution such as nitric and sulfuric acid solutions are chosen for the experiment and the selected materials of specimen are the stainless steels of SUS 304L and SUS 316L, the carbon steels of SS 41, SM 50 and RA 32, and highly pure lead. Electrochemical protection diagrams can be drawn with data from the external cathodic and anodic polarization curves of SUS 304L, SUS 316L and SM 50 steels in 5-60% nitric acid solutions and from those polarization curves of SS 41, RA 32, SM 50 and SUS 316L steels, and highly pure lead in 2.5-98% sulfuric acid solutions at the slow scanning rate. The data obtained with using the determination method of the optimum cathodic protection potential, the Tafel extrapolation method and the characteristics of anodic polarization curves. The main results obtained from the diagrams are as follows: 1) In nitric acid solution : (1) Corrosion potentials exist in each of those corrosion zones on the stainless steels in the lower concentration than about 12% solutions and on the high tensile strength steels in the lower concentration than about 30% solutions, but the corrosion current (density) in each zone is small on the above mentioned former steels and large on the latter ones. (2) The stainless steels can be self-passivated in the higher concentration than 15% solutions, and the high tensile strength steels gives rise to the same phenomenon in the higher concentration than 35% solutions. (3) The stainless steels in the lower concentration than 60% solutions and the high tensile strength steels in the higher concentration than 35% solutions can be used without protection, but the latter steels must ve protected anodically in the lower conccentration than about 30% solutions. 2) In sufuric acid solution : (1) The carbon steels can be self-passivated in the higher concentration than 45% solutions, and the SUS 316L steel in higher concentration than 75% solutions and the lead in all concentration solutions also gives rise to the same phenomenon. (2) The lead in the lower concentration than 80% solutions and the SUS 316L steel in the higher concentration than 80% solutions can be used without protection. (3) The carbon steels in the higher concentration than 50% solutions also can be used without protecting economically, but the SUS 316L steel in the 20-70% solutions are considerably corrosive without protecting anodically.

  • PDF

Detection of Deep Subsurface Cracks in Thick Stainless Steel Plate

  • Kishore, M.B.;Park, D.G.;Jeong, J.R.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.312-316
    • /
    • 2015
  • Unlike conventional Eddy Current Test (ECT), Pulsed Eddy Current (PEC) uses a multiple-frequency current pulse through the excitation coil. In the present study, the detection of subsurface cracks using a specially designed probe that allows the detection of a deeper crack with a relatively small current density has been attempted using the PEC technique. The tested sample is a piece of 304 stainless steel (SS304) with a thickness of 30mm. Small electrical discharge machining (EDM) notches were put in the test sample at different depths from the surface to simulate the subsurface cracks in a pipe. The designed PEC probe consists of an excitation coil and a Hall sensor and can detect a subsurface crack as narrow and shallow as 0.2 mm wide and 2 mm deep. The maximum distance between the probe and the defect is 28 mm. The peak amplitude of the detected pulse is used to evaluate the cracks under the sample surface. In time domain analysis, the greater the crack depth the greater the peak amplitude of the detected pulse. The experimental results indicated that the proposed system has the potential to detect the subsurface cracks in stainless steel plates.

Design and stress analysis of femur bone implant with composite plates

  • Ramakrishna, S.;Pavani, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.5 no.1
    • /
    • pp.37-50
    • /
    • 2020
  • Development of lightweight implant plates are important to reduce the stress shielding effect for a prosthesis of femur bone fractures. Stainless steel (SS-316L) is a widely used material for making implants. Stress shielding effect and other issues arise due to the difference in mechanical properties of stainless steel when compared with bone. To overcome these issues, composite materials seem to be a better alternative solution. The comparison is made between two biocompatible composite materials, namely Ti-hydroxyapatite and Ti-polypropylene. "Titanium (Ti)" is fiber material while "hydroxyapatite" and "polypropylene" are matrix materials. These two composites have Young's modulus closer to the bone than stainless steel. Besides the variety of bones, present paper constrained to femur bone analysis only. Being heaviest and longest, the femur is the most likely to fail among all bone failures in human. Modelling of the femur bone, screws, implant and assembly was carried out using CATIA and static analysis was carried out using ANSYS. The femur bone assembly was analyzed for forces during daily activities. Ti-hydroxyapatite and Ti-polypropylene composite implants induced more stress in composite implant plate, results less stress induced in bone leading to a reduction in shielding effect than stainless steel implant plate thus ensuring safety and quick healing for the patient.