• Title/Summary/Keyword: SS(Stainless steel)

Search Result 156, Processing Time 0.024 seconds

Performance of plastic hinges in FRP-strengthened compressive steel tubes for different strain-hardening response

  • Ali Reza Nazari;Farid Taheri
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.301-313
    • /
    • 2024
  • Plastic buckling of tubular columns has been attributed to rotational instability of plastic hinges. The present study aimed to characterize the plastic hinges for two different grades of strain-hardening, examined in mild-steel (MS) and stainless-teel (SS) tubes with un-strengthened and strengthened conditions. At the primary stage, the formerly tested experimental specimens were simulated using full-scale FE models considering nonlinear response of the materials, then to estimate the characteristics of the plastic hinges, a meso model was developed from the critical region of the tubes and the moment-rotation diagrams were depicted under pure bending conditions. By comparison of the relative rotation diagram obtained by the full-scale models with the critical rotation under pure bending, the length and critical rotation of the plastic hinges under eccentric axial load were estimated. The stress and displacement diagrams indicated the mechanism of higher energy absorption in the strengthened tubes, compared to unstrengthened specimens, due to establishment of stable wrinkles along the tubes. The meso model showed that by increasing the critical rotation in the strengthened MS tube equal to 1450%, the energy absorption of the tube has been enhanced to 2100%, prior to collapse.

Evaluation of Wear Performance of Corroded Materials in an 800℃ Molten Salt Environment (800℃ 용융염 환경에서 부식된 재료의 마모 성능 평가)

  • Yong Seok Choi;Kyeongryeol Park;Seongmin Kang;Unseong Kim;Kyungeun Jeong;Ji Ha Lee;Tae Woong Ha;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.97-102
    • /
    • 2024
  • The next-generation Molten Salt Reactor is known for its high safety because it uses nuclear fuel dissolved in high-temperature molten salt, unlike traditional solid atomic fuel methods. However, the high-temperature molten salt causes severe corrosion in internal structural materials, threatening the reactor's safety. Therefore, it is crucial to investigate the high-temperature corrosion resistance and wear performance of materials used in reactors to ensure safety. In this study, the high-temperature corrosion resistances and wear performances of corrosion samples in a NaCl-MgCl2-KCl (20-40-40 [wt%]) molten salt are investigated to evaluate the applicability of economically viable stainless steels, 316SS and 304SS. Hastelloy C276 and a new alloy containing a small amount of Nb are used as reference samples for comparative analysis. The mass loss, mass loss rate per unit volume, and surface roughness of each sample are measured to understand the corrosion mechanisms. Scanning electron microscopy and energy-dispersive spectroscopy analyses are employed to analyze the corrosion mechanisms. Wear tests on the corroded samples are also conducted to assess the extent of corrosion. Based on the experimental results, we predict the lifespans of the materials and evaluate their suitability as candidate materials for molten salt reactors. The data obtained from the experiments provide a valuable database for structural materials that can enhance the stability of molten salt reactors and recommend high-temperature corrosion-resistant materials suitable for next-generation reactors.

Variations in surface roughness of seven orthodontic archwires: an SEM-profilometry study

  • Amini, Fariborz;Rakhshan, Vahid;Pousti, Maryam;Rahimi, Hajir;Shariati, Mahsa;Aghamohamadi, Bahareh
    • The korean journal of orthodontics
    • /
    • v.42 no.3
    • /
    • pp.129-137
    • /
    • 2012
  • Objective: The purpose of this study was to evaluate the surface roughness (SR) of 2 types of orthodontic archwires made by 4 different manufacturers. Methods: This in vitro experimental study was conducted on 35 specimens of 7 different orthodontic archwires, namely, 1 nickel-titanium (NiTi) archwire each from the manufacturers American Orthodontics, OrthoTechnology, All-Star Orthodontics, and Smart Technology, and 1 stainless steel (SS) archwire each from the manufacturers American Orthodontics, OrthoTechnology, and All-Star Orthodontics. Aft er analyzing the composition of each wire by energy-dispersive X-ray analysis, the SR of each wire was determined by scanning electron microscopy (SEM) and surface profilometry. Data were analyzed using the Kruskal-Wallis and Mann-Whitney U tests (${\alpha}$ < 0.05). Results: The average SR of NiTi wires manufactured by Smart Technology, American Orthodontics, OrthoTechnology, and All-Star Orthodontics were $1,289{\pm}915A^{\circ}$, $1,378{\pm}372A^{\circ}$, $2,444{\pm}369A^{\circ}$, and $5,242{\pm}2,832A^{\circ}$, respectively. The average SR of SS wires manufactured by All-Star Orthodontics, OrthoTechnology, and American Orthodontics were $710{\pm}210A^{\circ}$, $1,831{\pm}1,156A^{\circ}$, and $4,018{\pm}2,214A^{\circ}$, respectively. Similar to the results of profilometry, the SEM images showed more defects and cracks on the SS wire made by American Orthodontics and the NiTi wire made by All-Star Orthodontics than others. Conclusions: The NiTi wire manufactured by All-Star Orthodontics and the SS wire made by American Orthodontics were the roughest wires.

Development of Polymer Coating Method for Stable Stent Coating Using Chemical Bond Between Metal Surface and Polymer (안정된 스텐트 코팅막을 형성하기 위해 금속표면과 고분자 사이의 화학적 결합을 이용한 고분자 코팅법 개발)

  • Nam, Dae-Sik;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • To produce stable polymer coating layer using the interaction between metal stent and polymer layer, Ahx-HSAB was synthesized by coupling 6-aminoheanoic acid (Ahx) with N-Hydroxy succinimidyl 4-azidobenzonate (HSAB) containing photo reactive group. Then, Ahx-HSAB was applied to self·assembled monolayer (SAM) on $TiO_2$-coated surface, since one end of Ahx-HSAB was carboxyl acid which was known to be able to interact with $TiO_2$ surface. That SAM layer was incubated in 1% polycaprolacton (PCL) solution and photoreacted by ultraviolet light (254 nm) to produce the chemical bond between SAM and polymer layer, followed by PCL polymer coating ({\sim}5\;{\mu}m$) by the method of spray coating. The surface change was investigated by measuring of contact angle of the surface. The contact angle values of stainless steel (SS) surface, $TiO_2$-coated surface, SAM layer by Ahx-HSAB, photoreacted surface with PCL and PCL layer by spray coating were 70.48${\pm}$1.89, 38.57${\pm}$3.31, 60.14${\pm}$2.21, 54.91${\pm}$2.70 and 56.47${\pm}$2.12, respectively. The stability of polymer layers was tested by incubation of PCL-coated plates in 0.1M PBS buffer (pH 7.4, 0.05%, Tween 80) with vigorous shaking (200 rpm). While the poiymer layer prepared by these processes showed the intact surface morphology over 3 days, the polymer layers prepared by spray coating of PCL onto SS plate (control 1) and $TiO_2$-coated SS plate (control 2) were Peeled off in 3 days. Thus, the polymer coating method using SAM and photoreaction seems to be a effective method to obtain the stable polymer layer onto SS surface.

A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging

  • Kajan, Zahra Dalili;Khademi, Jalil;Alizadeh, Ahmad;Hemmaty, Yasamin Babaei;Roushan, Zahra Atrkar
    • Imaging Science in Dentistry
    • /
    • v.45 no.3
    • /
    • pp.159-168
    • /
    • 2015
  • Purpose: This study was performed to compare the metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. Material and Methods: A dry mandible with 12 intact premolars was prepared, and was scanned ten times with various types of brackets: American, 3M, Dentaurum, and Masel orthodontic brackets were used, together with either stainless steel (SS) or nickel titanium (NiTi) wires. Subsequently, three different sequences of coronal and axial images were obtained: spin-echo $T_1$-weighted images, fast spin-echo $T_2$-weighted images, and fluid-attenuated inversion recovery images. In each sequence, the two sequential axial and coronal images with the largest signal-void area were selected. The largest diameters of the signal voids in the direction of the X-, Y-, and Z-axes were then measured twice. Finally, the mean linear values associated with different orthodontic brackets were analyzed using one-way analysis of variation, and the results were compared using the independent t-test to assess whether the use of SS or NiTi wires had a significant effect on the images. Results: Statistically significant differences were only observed along the Z-axis among the four different brands of orthodontic brackets with SS wires. A statistically significant difference was observed along all axes among the brackets with NiTi wires. A statistically significant difference was found only along the Z-axis between nickel-free and nickel-containing brackets. Conclusion: With respect to all axes, the 3M bracket was associated with smaller signal-void areas. Overall, the 3M and Dentaurum brackets with NiTi wires induced smaller artifacts along all axes than those with SS wires.

Effects of Surface Treatment of Cathode Materials on the Electrodeposition Behavior of Fe-Ni Alloy (표면처리와 전극 재료가 철-니켈 합금 도금에 미치는 영향)

  • Kang, Na Young;Lee, Jae Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.71-75
    • /
    • 2022
  • In this research, Fe-Ni alloy films were electrodeposited on stainless steel (SS304 and SS430) and Ti plates to investigate the effects of surface conditions of cathode on deposits. The Ti plates were electropolished in 3 M H2SO4-methanol electrolytes at various conditions before electrodeposition, and unpolished Ti and the optimized specimen, polished at 10 V for 8 min, were used as cathode. The anomalous codeposition, the phenomenon which more active Fe is reduced preferentially, occurred on all substrate, however, there were differences in composition of all deposits. As the results of potential monitoring during electrodeposition, it was confirmed that the larger overpotential was applied to the deposition cell when using Ti cathode, leading to high Fe content of deposits from unpolished Ti due to increase in nucleation of Fe. Also, it was founded that the polished Ti can reduced deposition overpotential.

Gene Expression Analysis of Lung Injury in Rats Induced by Exposure to MMA-SS Welding Fume for 30 Days

  • Oh, Jung-Hwa;Park, Han-Jin;Heo, Sun-Hee;Yang, Mi-Jin;Yang, Young-Su;Song, Chang-Woo;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.306-313
    • /
    • 2007
  • The welding fume has been implicated as a causal agent in respiratory disease such as pneumoconiosis. The molecular mechanism by which welding fume induces toxicity in the lung is still unknown, but studies have focused on histological structure and indirect approach measuring the pulmonary damage markers. In the present study, gene expression profiles were analyzed in the lung of rats exposed by manual metal-arc stainless-steel (MMA-SS) welding fume for 30 days using Affymetrix GeneChip$^{(R)}$. Totally, 379 genes were identified as being either up- or down-regulated over 2-fold changes (P<0.01) in the lung of low- or high-dose group and were analyzed by using hierarchical clustering. We focused on genes involved in immune/inflammation responses were differentially regulated during lung injury induced by welding fume exposure. The information of these deregulated genes may contribute in elucidation of the inflammation mechanism during lung injury such as lung fibrosis.

A study on charging and electrical stability characteristics with no-insulation and metal insulation in form of racetrack type coils

  • Quach, Huu Luong;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.13-19
    • /
    • 2020
  • This study presents the experiment and simulation results on the magnetic field response and electrical stability behaviors of no-insulation (NI) and metal insulation with stainless steel tape (MI-SS) which wound in form of racetrack type coils. First of all, the structural design of the racetrack type bobbin was shown along with its parameters. Then, the current-voltage tests were carried out to measure the critical current of both test coils. Also, the sudden discharging and charging tests were performed in the steady state to estimate the decay field time and magnetic field response, respectively. Finally, the overcurrent tests were conducted in the transient state to investigate the electrical stability of these test coils. Based on the experimental results, the contact surface resistances were calculated and applied to the field coils (FCs) of 10-MW-class second generation high temperature superconducting generator (2G HTSG) used in wind offshore environment. The charging delay time and electrical stability for NI and MI-SS HTS FCs of 10-MW-class 2G HTSG are analyzed by the equivalent circuit model and the key parameters which were obtained from the electromagnetic finite element analysis results.

Creep-Fatigue Crack Growth Behavior of a Structure with Crack Like Defects at the Welds

  • Lee, Hyeong-Yeon;Kim, Seok-Hoon;Lee, Jae-Han;Kim, Byung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2136-2146
    • /
    • 2006
  • A study on a creep-fatigue crack growth behavior has been carried out for a cylindrical structure with weldments by using a structural test and an evaluation according to the assessment procedures. The creep-fatigue crack growth behavior following the creep-fatigue crack initiation has been assessed by using the French A16 procedure and the conservatism for the present structural test has been examined. The structural specimen is a welded cylindrical shell made of 316 L stainless steel (SS) for one half of the cylinder and 304 SS for the other half. In the creep-fatigue test, the hold time under a tensile load which produces the primary nominal stress of 45 MPa was one hour at $600^{\circ}C$ and creep-fatigue loads of 600 cycles were applied. The evaluation results for the creep-fatigue crack propagation were compared with those of the observed images from the structural test. The assessment results for the creep-fatigue crack behavior according to the French Al6 procedure showed that the Al6 is overly conservative for the creep-fatigue crack propagation in the present case with a short hold time of one hour.

Ultrasonic Image of the Side Drilled Holes in SS Reference Block as Combining Bases of Support for Spatial Frequency Response

  • Koo, Kil-Mo;Song, Chul-Hwa;Beak, Won-Pil;Kang, Hee-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.322-326
    • /
    • 2008
  • In this paper, we have studied the images which have been reconstructed by using combination of images acquired by the variation of operating frequency. When inner images have been reconstructed, they have been superposed by the surface state effect. In this case, the images of the phase object can be enhanced by the contrast of inner images. There is a kind of specimen, one is a reference block having 1/4T, 1/2T, 3/4T side drilled holes as main run piping material of the steam generator in nuclear power plants. It has been shown that the two results of defect shapes have better than before in this processing and phase contrast grow about twice. And we have constructed the acoustic microscope by using a quadrature detector that enables to acquire the amplitude and phase of the reflected signal simultaneously. Further more we have studied the reconstruction method of the amplitude and phase images, the enhancement method of the defect images' contrast.

  • PDF