• Title/Summary/Keyword: SRSL

Search Result 4, Processing Time 0.022 seconds

Hydraulic Conductivity and Strength Characteristics of Self Recovering Sustainable Liner (SRSL) as a Landfill Final Cover (SRSL 매립지 최종 복토층의 투수 및 강도 특성)

  • Kwon, Oh-Jung;Lee, Ju-Hyung;Cho, Wan-Jei;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.5-15
    • /
    • 2011
  • Conventional designs of landfill covers use geosynthetics such as geomembrane and GCL, and clay liners to lower the permeability of final covers of landfill sites. However, differential settlement and the variation of temperature or humidity in landfill sites cause the development of cracks or structural damage inside the final cover. This study examined the application of a Self Recovering Sustainable Liner (SRSL) as an alternative landfill final cover material. SRSL consists of double layers, which have chemicals, can generate precipitates filling the pores of the layers by chemical reaction. The interface material forms an impermeable layer and in case of internal cracks, the reactants of the two layers migrate towards the crack and heal it by forming another liner. In this study the applicability of SRSL material for landfill final cover was examined by performing flexible wall permeameter tests to prove that the hydraulic conductivity is lower than the regulations and unconfined compression tests to judge whether the strength satisfies the restriction for the landfill final cover. Furthermore, the environmental impacts on the permeability and strength were evaluated. The experimental results show that the SRSL has lower hydraulic conductivity and higher strength than the regulations and is little influenced by climatic changes such as wet/dry or freeze/thaw process.

Evaluating the recovering capacity of cracked SRSL in the landfill final cover (SRSL(Self Recovering Sustainable Liner)재의 매립지 최종복토층에서균열 손상 시 치유 능력 검토)

  • Baek, Hyun-Uk;Ha, Min-Ki;Kwon, Oh-Jung;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1412-1419
    • /
    • 2005
  • Preventing the infiltration of rainwater into the landfill site is the main purpose of the final cover in landfill sites. Compacted clay layer or geomembrain have been used as a conventional landfill final cover. But they have several disadvantages when damages might occur due to puncturing, differential settlement and desiccation or freeze and thaw. For this reason, as an alternative method SRSL(Self Recovering Sustainable Liner) has been developed. Adopting the precipitation reaction of two chemical material, by forming precipitates that fill the pores, and lower the overall permeability of the liner. The advantage of this method is that when fracture of the liner occurs the remaining reactants of the two layers form precipitates that fill the fracture and recover the low permeability of the liner. In this study, the recovering ability of the SRSL with a crack due to the seasonal variation or differential settlements was investigated by permeability tests. And in order to estimate the durability of the SRSL after freeze/thaw and desiccation, uniaxial compression strength tests were performed.

  • PDF

Investigation on Differential Settlement Characteristics of the Final Landfill Cover Used SRSL (부등침하 발생 시 SRSL이 적용된 매립지 최종복토층의 침하 특성 검토)

  • Kwon, Oh-Jung;Oh, Myoung-Hak;Cho, Wan-Jei;Park, Jun-Boum
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.9-17
    • /
    • 2009
  • This research was intended to verify the stability of landfill final cover using SRSL(Self Recovering Sustainable Liner) with regard to differential settlements due to the degradation of waste and so on in a waste landfill. Numerical analysis was performed using FLAC 2D software program with input parameters based on soil characteristic tests and reference data after the blank was designed in order to represent the decomposition condition of waste. The maximum settlement of landfill cover was calculated to investigate the structural stability of landfill cover with the different condition of settlement width, settlement depth, and number of differential settlements. The allowable maximum deformation rate of SRSL, which was calculated using field permeability tests, was 6 mm. The analysis showed that SRSL was stable in case of a differential settlement width not exceeding 24.5% of total cover width.

  • PDF

Applicability of SRSL(Self-Recovering Sustainable Liner) to the Landfill Final Cover System (SRSL(Self Recovering Sustainable Liner)재의 매립지 최종복토층에 대한 활용성 검토)

  • Kwon, Oh-Jung;Seo, Min-Woo;Hong, Soo-Jung;Park, Jun-Boum;Park, Soo-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.453-460
    • /
    • 2004
  • To prevent penetration of rainwater into the landfill site is the main purpose of the final cover in landfill sites. Conventional designs of landfill covers uses geotextiles such as geomembrane and GCL, and clay liners to lower the permeability of final covers of landfill sites. However, differential settlement and the variation of temperature in landfill sites cause the development of cracks or structural damage inside the final cover and it is also difficult to obtain clay - the main material of the compacted clay liner in Korea. Thus the former final cover system that suggests geomembrane and GCL or compacted clay liner has several limitations. Therefore, an alternative method is necessary and one of them is the application of SRSL(self-Recovering Sustainable Liner) material. SRSL is two different layers consist of individual materials that react with each other and form precipitates, and with this process lowers the permeability of the landfill final cover. SRSL generally is made up of two layers, so that when a internal crack occurs the reactants of the two layers migrate towards the crack and heal it by forming another liner. In this study the applicability of SRSL material for landfill final cover was examined by performing; (1) jar test to verify the formation of precipitate in the mixture of each reactants, (2) falling head test considering the field stress in order to confirm the decrease of permeability or prove that the hydraulic condctivity is lower than the regulations, (3) compression tests to judge weather if the strength satisfies the restricts for landfills, (4) freeze/thaw test to check the applicability of SRSL for domestic climate. In addition, the application of waste materials in the environmental and economical aspect was inspected, and finally the possibility of secondary contamination due to the waste materials was examined by performing elution tests.

  • PDF