• Title/Summary/Keyword: SREBP

Search Result 237, Processing Time 0.027 seconds

Effects of Ethanol Extract of Benincasa Seeds on the Experimental Cellular Model of Nonalcoholic Fatty Liver Disease (동과자 에탄올 추출물이 비알코올성 지방간 세포 모델에 미치는 효과)

  • Choi, Jun-Young;Kim, So-Yeon;Kwun, Min-Jung;Kim, Kyun-Ha;Joo, Myung-Soo;Han, Chang-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.4
    • /
    • pp.438-447
    • /
    • 2012
  • Objectives : In this study, we investigated the effect and the underlying mechanism of ethanol extract of Benincasa seeds on a cellular model of non-alcoholic fatty liver disease (NAFLD) established by treating HepG2 cells with palmitate. Methods : We evaluated ethanol extract of Benincasa seeds (EEBS) for its hepatic lipid-lowering potential in fatty acid overloaded HepG2 cells. After incubation in palmitate containing media with or without EEBS, intracellular neutral lipid accumulations were quantified by Nile red staining. We also investigated the effect of EEBS on lipogenesis and ${\beta}$-oxidation. $LXR{\alpha}$-dependent SREBP-1c activation, expression of lipogenic genes, and expression of ${\beta}$-oxidation related genes were determined with or without pretreatment of EEBS. Results : EEBS significantly attenuated palmitate-induced intracellular neutral lipid accumulation in HepG2 cells. EEBS suppressed fatty acid synthesis by inhibiting $LXR{\alpha}$-dependent SREBP-1c activation. EEBS also repressed SREBP-1c mediated induction of lipogenic genes, including ACC, FAS, and SCD-1. However, EEBS had no effect on ${\beta}$-oxidation related CPT-1 and $PPAR{\alpha}$ gene expression. Conclusions : Our results suggest that EEBS has an efficacy to decrease hepatic lipid accumulation, and this effect was mediated by inhibiting the $LXR{\alpha}$-SREBP-1c pathway that leads to expression of lipogenic genes and hepatic steatosis. Therefore, the Benincasa seeds may have a potential clinical application for treatment of this chronic liver disease.

Effects of Compounds from Physalis angulata on Fatty Acid Synthesis and Glucose Metabolism in HepG2 Cells via the AMP-activated Protein Kinase Pathway

  • Hoa, Hoang Thai;Thu, Nguyen Thi;Dong, Nguyen Thuong;Oanh, Tran Thi;Hien, Tran Thi;Ha, Do Thi
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.200-206
    • /
    • 2020
  • The ability of the total extract from Physalis angulata; three fractions after partitioning with n-hexane, ethyl acetate (TBE), and water; and four withanolides (compounds 1 - 4) to phosphorylate 5'-adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in HepG2 cells was evaluated. The TBE fraction (50 ㎍/mL) activated p-ACC and p-AMPK expression most strongly. Compounds 1 - 4 (10 μM) upregulated p-ACC expression at different levels. Compound 4 induced the most significant changes in p-AMPK expression, followed by 1 and 2. Sterol regulatory element-binding proteins (SREBPs) play a functional role in the transcriptional regulation of the lipogenic pathway, including fatty acid synthase (FAS) and ACC. The effects of compounds 2 and 4 (10 μM) on FAS and SREBP-1c expression under high glucose conditions (30 mM) in HepG2 cells were evaluated further. Both dose-dependently inhibited FAS and SREBP-1c expression as well as lipid accumulation (1 - 10 μM) were compared to high-concentration glucose control, which upregulated FAS and SREBP-1c. These results suggest that compounds 2 and 4 upregulate AMPK, suppress FAS and SREBP-1c, and have potential effects on glucose and lipid metabolism.

Fermented Soymilk Alleviates Lipid Accumulation by Inhibition of SREBP-1 and Activation of NRF-2 in the Hepatocellular Steatosis Model

  • Ahn, Sang Bong;Wu, Wen Hao;Lee, Jong Hun;Jun, Dae Won;Kim, Jihyun;Kim, Riji;Lee, Tae-bok;Jun, Jin Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.236-245
    • /
    • 2018
  • Ingredients of soy and fermented soy products have been widely utilized as food supplements for health-enhancing properties. The aim of this study was to evaluate the effects of fermented soymilk (FSM) and soymilk (SM) on free fatty acid-induced lipogenesis in the hepatocellular steatosis model. HepG2 cells were incubated with palmitic acid (PA) for 24 h to induce lipogenesis and accumulation of intracellular lipid contents. The PA-treated cells were co-incubated with FSM, SM, genistein, and estrogen, respectively. Lipid accumulation in the PA-treated HpG2 cells was significantly decreased by co-incubation with FSM. Treatment of HepG2 cells with PA combined with genistein or estrogen significantly increased the expression of SREBP-1. However, FSM co-incubation significantly attenuated SREBP-1 expression in the PA-treated HepG2 cells; in addition, expression of NRF-2 and phosphorylation of ERK were significantly increased in the PA and FSM co-incubated cells. PA-induced ROS production was significantly reduced by FSM and SM. Our results suggested that the bioactive components of FSM could protect hepatocytes against the lipid accumulation and ROS production induced by free fatty acids. These effects may be mediated by the inhibition of SREBP-1 and the activation of NRF-2 via the ERK pathway in HepG2 cells.

Inhibitory Activity of Wild-Simulated Ginseng against Non-Alcoholic Fatty Liver Disease in HepG-2 Cells

  • So Jung Park;Yurry Um;Min Yeong Choi;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.43-43
    • /
    • 2023
  • In this study, we investigated in vitro inhibitory activity of wild-simulated ginseng (WSG) against non-alcoholic fatty liver disease using HepG-2 cells. T0901317 treatment increased the lipid accumulation in HepG-2 cells, but WSG treatment inhibited T0901317-mediated lipid accumulation. In addition, WSG downregulated T0901317-mediated expression of SREBP-1c, ACC, FAS and SCD-1 protein. In addition, WSG increased the phosphorylation level of LKB1 and AMPK. Compound C treatment blocked WSG-mediated downregulation of SREBP-1c protein. In conclusion, WSG is considered to inhibit the accumulation of lipids and triglycerides in HepG-2 cells by inducing the activation of LKB1 and AMPK successively, thereby reducing the expression of FAS, ACC, and SCD-1 through suppression of SREBP-1c expression.

  • PDF

The Ginsenoside-Rb2 lowers cholesterol and triacylglycerol levels in 3T3-L1 adipocytes cultured under high cholesterol or fatty acids conditions

  • Kim, Eun-Ju;Lee, Hyun-Il;Chung, Kyung-Jin;Noh, Yun-Hee;Ro, Young-Tae;Koo, Ja-Hyun
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.194-199
    • /
    • 2009
  • The effects of the ginsenoside Rb2 (Rb2) on lipid metabolism were characterized in 3T3-L1 adipocytes to evaluate their utility for treating obesity. While the amounts of total cholesterol and triacylglycerol (TAG) were markedly increased in the adipocytes treated with high amounts of cholesterol and fetal bovine serum (FBS), the test groups treated with Rb2 showed levels that were close to normal. The effect of Rb2 on these cells was comparable to that of lovastatin. Rb2 enhanced the expression of the sterol regulated element binding protein (SREBP) mRNA whereas treatment with cholesterol and FBS led to a reduction in the abundance of this transcript. The activity of fatty acid synthetase (FAS) was lower in the cholesterol group compared to the Rb2 treatment group suggesting that the observed decrease in cholesterol levels and activated SREBP was mediated by Rb2. Treatment with Rb2 also resulted in a decrease in TAG levels in adipocytes cultured under high fatty acid conditions. This effect was mediated by stimulating the expression of SREBP and Leptin mRNA, suggesting that Rb2 might be a valuable component capable of lowering the levels of lipids.

The Effects of Hoechunyanggyeok-san on hyperglycemia and Dyslipidemia in db/db mice (회춘양격산(回春凉膈散)이 db/db 마우스의 고혈당 및 지질대사에 미치는 효과)

  • Jang, Soo-Young;Jung, Yu-Sun;Shin, Hyeon-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.1
    • /
    • pp.70-78
    • /
    • 2014
  • Objectives : Hoechunyanggyeok-san (HYS) is a traditional herbal medicine, which has been clinically used for treating febrile and inflammatory diseases. HYS has been reported to be a useful treatment for diabetes, atherosclerosis and hyperlipidemia in the type 1 diabetic model. However, the mechanism of the effects of HYS against hyperglycemia and hyperlipidemia is poorly understood. In the present study, we investigated the underlying mechanism of ameliorative effect of HYS on hyperglycemia and hyperlipidemia in vivo. Methods : HYS (10, 50 mg/kg/day, p.o.) was administered every day for 2 weeks to db/db mice and its effect was compared with vehicle-treated db/db mice. To confirm serum glucose and triglyceride (TG) changes, serological testing was performed. The levels of sterol regulatory element-binding protein-1 (SREBP-1) activity and Sirtuin1 (SIRT1), AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase ${\alpha}$ ($ACC{\alpha}$) expression were analyzed by western blot analysis. Results : The administration of HYS significantly decreased the elevated serum glucose and TG in db/db mice. HYS administration increased the levels of SIRT1 and AMPK expression compared with the vehicle-treated group. Moreover, HYS treatment significantly inhibited SREBP-1 activity and $ACC{\alpha}$ expression in the liver, while the vehicle-treated group exhibited their increase. Conclusions : In conclusion, HYS is suggested to have an improvement effect on hyperglycemia and hyperlipidemia by activating the SIRT1/AMPK signaling pathway and inhibiting SREBP-1.

Effect of Jungmanbunso-hwan Extract on HepG2 Cell Model of Nonalcoholic Fatty Liver Disease Caused by Palmitate (중만분소환 추출물이 Palmitate로 유발된 비알코올성 지방간 HepG2 cell 모델에 미치는 영향)

  • Lee, Ji-won;Choi, Chang-won;Jeon, Sang-yun;Han, Chang-woo;Ha, Ye-jin
    • The Journal of Internal Korean Medicine
    • /
    • v.37 no.3
    • /
    • pp.442-452
    • /
    • 2016
  • Objectives: This study was performed to investigate the anti-lipogenic effect and the mechanism of Jungmanbunso-hwan extract (JMBSH) on a cellular model of non-alcoholic fatty liver disease (NAFLD) caused by palmitate in HepG2 cells.Methods: The JMBSH was prepared, andHepG2 cells were treated with various concentrations of JMBSH in order to perform an MTT assay. The HepG2 cells were cultivated in palmitate-containing media with or without extract of JMBSH. The intracellular lipid content in the HepG2 cells was examined. The effects of JMBSH on sterol regulatory element-binding transcription factor-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and AMP-activated protein kinase (AMPK) activation in HepG2 cells were measured.Results: JMBSH did not reduce HepG2 cell viability under 1,000 μg/mL. JMBSH considerably decreased intracellular lipid accumulation caused by palmitate in HepG2 cells. JMBSH repressed expression of SREBP-1c, which mediates the induction of lipogenic genes (ACC, FAS, and SCD-1). JMBSH also activated AMPK, which plays animportant role in the regulation of hepatic lipid metabolism.Conclusions: This study suggested that JMBSH relieves hepatic steatosis by repressing SREBP-1c, which mediates the induction of lipogenic genes. The anti-lipogenic effect of JMBSH may also be related to the activation of AMPK. Therefore, JMBSH could potentially be applied to NAFLD treatment after further clinical studies.

Effects of Dietary Algal Docosahexaenoic Acid Oil Supplementation on Fatty Acid Deposition and Gene Expression in Laying Tsaiya Ducks

  • Cheng, C.H.;Ou, B.R.;Shen, T.F.;Ding, Shih-Torng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.1047-1053
    • /
    • 2006
  • The current study was designed to determine the effects of dietary docosahexaenoic acid (DHA) on fatty acid deposition in egg yolk and various tissues of laying Tsaiya ducks, and on the mRNA concentrations of hepatic lipogenesis-related transcription factors. Thirty laying ducks were randomly assigned to three treatments with diets based on corn-soybean meal (ME: 2803 kcal/kg; CP: 17.1%; Ca: 3.4%) supplemented with 0% (control diet), 0.5% or 2% algal DHA oil. The DHA content in egg yolks of the ducks was elevated significantly (p<0.01) with the supplementation of dietary DHA. The DHA percentage of the total fatty acids in the egg yolk of laying ducks was 0.5%, 1.3% and 3.4% for 0%, 0.5% and 2% algal DHA oil treatments, respectively, for the $1^{st}$ week, and 0.5%, 1.5% and 3.3% for the $2^{nd}$ week. Therefore, algal DHA oil can be utilized by laying Tsaiya ducks to enhance the egg-yolk DHA content. The concentrations of triacylglycerol (TG) and cholesterol in plasma of laying Tsaiya ducks were not affected by dietary DHA treatments (p>0.05). The DHA concentration in plasma, liver, and skeletal muscle was increased with the addition of dietary algal DHA oil (p<0.05). The mRNA abundance of sterol regulatory element binding protein 1 (SREBP1) and SREBP2 in the livers of laying Tsaiya ducks was not affected by dietary DHA, suggesting that the expression of these transcription factors is tightly controlled and not sensitive to DHA treatments.

Novel artesunate-metformin conjugate inhibits bladder cancer cell growth associated with Clusterin/SREBP1/FASN signaling pathway

  • Peiyu Lin;Xiyue Yang;Linghui Wang;Xin Zou;Lingli Mu;Cangcang Xu;Xiaoping Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.219-227
    • /
    • 2024
  • Bladder cancer remains the 10th most common cancer worldwide. In recent years, metformin has been found to have potential anti-bladder cancer activity while high concentration of IC50 at millimolar level is needed, which could not be reached by regular oral administration route. Thus, higher efficient agent is urgently demanded for clinically treating bladder cancer. Here, by conjugating artesunate to metformin, a novel artesunate-metformin dimer triazine derivative AM2 was designed and synthesized. The inhibitory effect of AM2 on bladder cancer cell line T24 and the mechanism underlying was determined. Anti-tumor activity of AM2 was assessed by MTT, cloning formation and wound healing assays. Decreasing effect of AM2 on lipogenesis was determined by oil red O staining. The protein expressions of Clusterin, SREBP1 and FASN in T24 cells were evaluated by Western blotting. The results show that AM2 significantly inhibited cell proliferation and migration at micromolar level, much higher than parental metformin. AM2 reduced lipogenesis and down-regulated the expressions of Clusterin, SREBP1 and FASN. These results suggest that AM2 inhibits the growth of bladder cancer cells T24 by inhibiting cellular lipogenesis associated with the Clusterin/SREBP1/FASN signaling pathway.

Inhibitory Effect of Purple Corn 'Seakso 1' Husk and Cob Extracts on Lipid Accumulation in Oleic Acid- Induced Non-Alcoholic Fatty Liver Disease HepG2 Model (올레산 유도 비알코올성 지방간세포에서 자색옥수수 색소 1호 포엽과 속대 추출물의 지질 축적 억제 효과)

  • Lee, Ki Yeon;Kim, Tae hee;Kim, Jai Eun;Bae, Son wha;Park, A-Reum;Lee, Hyo Young;Choi, Sun jin;Park, Jong yeol;Kwon, Soon bae;Kim, Hee Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.1
    • /
    • pp.93-101
    • /
    • 2020
  • Seakso 1, a maize hybrid, was developed in 2008 by Gangwon Agricultural Research and Extension Services in Korea and registered in 2011. It is single-cross hybrid, semi-flint, deep-purple variety of corn, variety of are yellow, while the husks and cobs are purple. Due to the sensitivity of Seakso 1 to excess moisture after seeding, water supply should be carefully managed, and it should be harvested at a suitable time to obtain the highest anthocyanin content. This study investigated the hepatoprotective effect of Saekso 1 corn husk and cob extracts (EHCS) in oleic acid-induced non-alcoholic fatty liver disease (NAFLD) in HepG2 cells. EHCS showed a high level of lipid accumulation inhibiting effect. EHCS also suppressed triglyceride accumulation and inhibited expression of lipid marker genes, such as sterol regulatory element binding protein-1c (SREBP-1c) and sterol regulatory element binding protein-1a (SREBP-1a). Analysis by western blot of the expression of p-AMPK, p-SREBP1, PPARα, and FAS proteins showed that the incidence of SREBP1 protein, a major factor involved in lipid metabolism in the liver, has decreased significantly after treatment with the extracts. Moreover, the protein-induced expression of FAS, a major enzyme involved in the biosynthetic pathways of fatty acids, was decreased significantly in all concentrations. These results suggest that EHCS is a potent agent for the treatment of NAFLD.