• Title/Summary/Keyword: SREBP

Search Result 237, Processing Time 0.021 seconds

Inhibitory Effect of Rumex Crispus L. Fraction on Adipocyte Differentiation in 3T3-L1 Cells (소리쟁이 분획물의 지방세포 분화 억제 효과)

  • Park, Sung-Jin;Choi, Jun-Hyeok;Jung, Yeon-Seop;Yu, Mi Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.90-96
    • /
    • 2013
  • The anti-obesity effect of ethanol xtract and their fractions from Rumex Crispus L. on the differentiation of 3T3-L1 pre-adipocytes to adipocytes was investigated by suppressing adipocyte differentiation and lipid accumulation with Oil red O assay, western blot and real-time PCR analysis. Ethyl acetate fraction of Rumex crispus L. significantly inhibited adipocyte differentiation when treated during the adipocyte differentiation process, as assessed by measuring fat accumulation using Oil red O staining. In inducing differentiation of 3T3-L1 preadipocytes in the presence of an adipogenic cocktail, isobutylmethylxanthine (IBMX), dexamethasone- and insulin-along with ethyl acetate fraction residue processing treatment significantly decreased protein expression of obesity-related proteins, such as peroxisome-proliferators-activated-receptor-${\gamma}$ ($PPAR{\gamma}$) and CCAAT enhancer-binding-proteins ${\alpha}$ ($C/EBP{\alpha}$). These results indicate that ethyl acetate fraction of Rumex crispus L. is the most effective candidate for preventing obesity. However further studies will be needed to identify the active compounds that confer the anti-obesity activity of ethyl acetate fraction from Rumex crispus L.

Convergence study on the through inhibition of differentiation in 3T3-L1 cells of ethanol extract from Trichosanthes kirilowii Maxim. Root (하늘타리(Trichosanthes kirilowii Maxim.) 뿌리 에탄올 추출물의 3T3-L1 지방세포 분화 억제 융합연구)

  • Kim, Sung Ok;Jeung, Ji-Suk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.127-133
    • /
    • 2019
  • The ami of our study was on the anti-obesity effect of ethanol extract from Trichosanthes kirilowii Maxim root (TKM) in murine adipocytes, 3T3-L1 cells. This study focused on anti-adipogenic activity through inhibition of cell differentiation in 3T3-L1 cells treated TKM. 100 ug/ml of non-cytotoxic TEM remarkablely inhibited content of triglycerol and suppressed expressions of $C/EBP{\alpha}$, $PPAR{\gamma}a$ and SREBP-1c related with lipogenic transcription factors in theres 3T3-L1 cells compared to (-)control cells. As phosphorylations of AMPK and ACC were incerased, HSL and CPT-1 mRNA expression increased upon TKM treatment, which involved in inhibition of fatty acid synthase expression. In conclusion, these results indicate that TKM can inhibit mRNA and protein expression of lipogenic genes in 3T3-L1 adipocytes. Our study suggests that TKM has potential anti-obesity effects and is a convergence therapeutic functional agent with anti-adipogenic activity via hypolipogenesis.

Red pepper seed water extract inhibits preadipocyte differentiation and induces mature adipocyte apoptosis in 3T3-L1 cells

  • Kim, Hwa-Jin;You, Mi-Kyoung;Lee, Young-Hyun;Kim, Hyun-Jung;Adhikari, Deepak;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.12 no.6
    • /
    • pp.494-502
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Reducing the number of adipocytes by inducing apoptosis of mature adipocytes as well as suppressing differentiation of preadipocytes plays an important role in preventing obesity. This study examines the anti-adipogenic and pro-apoptotic effect of red pepper seed water extract (RPS) prepared at $4^{\circ}C$ (RPS4) in 3T3-L1 cells. MATERIALS/METHODS: Effect of RPS4 or its fractions on lipid accumulation was determined in 3T3-L1 cells using oil red O (ORO) staining. The expressions of AMP-activated protein kinase (AMPK) and adipogenic associated proteins [peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR-{\gamma}$), CCAAT/enhancer-binding proteins ${\alpha}$ (C/EBP ${\alpha}$), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)] were measured in 3T3-L1 cells treated with RPS4. Apoptosis and the expression of Akt and Bcl-2 family proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), Bcl-2 like protein 4 (Bax), Bal-2 homologous antagonist/killer (Bak)] were measured in mature 3T3-L1 cells treated with RPS4. RESULTS: Treatment of RPS4 ($0-75{\mu}g/mL$) or its fractions ($0-50{\mu}g/mL$) for 24 h did not have an apparent cytotoxicity on pre and mature 3T3-L1 cells. RPS4 significantly suppressed differentiation and cellular lipid accumulation by increasing the phosphorylation of AMPK and reducing the expression of $PPAR-{\gamma}$, C/EBP ${\alpha}$, SREBP-1c, FAS, and ACC. In addition, all fractions except ethyl acetate fraction significantly suppressed cellular lipid accumulation. RPS4 induced the apoptosis of mature adipocytes by hypophosphorylating Akt, increasing the expression of the pro-apoptotic proteins, Bak, Bax, and Bad, and reducing the expression of the anti-apoptotic proteins, Bcl-2 and p-Bad. CONCLUSIONS: These finding suggest that RPS4 can reduce the numbers as well as the size of adipocytes and might useful for preventing and treating obesity.

Anti-obesity Effect of the Flavonoid Rich Fraction from Mulberry Leaf Extract (뽕잎 추출물 기원 Flavonoid Rich Fraction의 항비만효과)

  • Go, Eun Ji;Ryu, Byung Ryeol;Yang, Su Jin;Baek, Jong Suep;Ryu, Su Ji;Kim, Hyun Bok;Lim, Jung Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.6
    • /
    • pp.395-411
    • /
    • 2020
  • Background: This study investigated the anti-obesity effect of the flavonoid rich fraction (FRF) and its constituent, rutin obtained from the leaf of Morus alba L., on the lipid accumulation mechanism in 3T3-L1 adipocyte and C57BL/6 mouse models. Methods and Results: In Oil Red O staining, FRF (1,000 ㎍/㎖) treatments showed inhibition rate of 35.39% in lipid accumulation compared to that in the control. AdipoRedTM assay indicated that the triglyceride content in 3T3-L1 adipocytes treated with FRF (1,000 ㎍/㎖) was reduced to 23.22%, and free glycerol content was increased to 106.04% that of the control. FRF and its major constituent, rutin affected mRNA gene expression. Rutin contributed to the inhibition of Sterol regulatory element binding protein-1c (SREBP-1c) gene expression, and inhibited the transcription factors SREBP-1c, peroxisome proliferator-activated receptor gamma (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). In addition, the effect of FRF administration on obesity development in C57BL/6 mice fed high-fat diet (HFD) was investigated. FRF suppressed weight gain, and reduced liver triglyceride and leptin secretion. FRF exerted potential anti-inflammatory effects by improving insulin resistance and adiponectin levels, and could thus be used to help counteract obesity. The mRNA expressions of PPAR-γ, FAS, ACC, and CPT-1 were determined in liver tissue. Quantitative real-time PCR analysis was also performed to evaluate the expression of IL-1β, IL-6, and TNF-α in epididymal adipose tissue. Compared to the control group, mice fed the HFD showed the up-regulation in PPAR-γ, FAS, IL-6, and TNF-α genes, and down-regulation in CPT1 gene expression. FRF treatement markedly reduced the expression of PPAR-γ, FAS, IL-6, and TNF-α compared to those in HFD control, whereas increased the expression level of CPT1. Conclusions: These results suggest that the FRF and its major active constituent, rutin, can be used as effective anti-obesity agents.

Evaluation of Lipid Accumulation's Inhibitory Activity on 3T3-L1 Cells with Red Yeast Barley Extracts (홍맥 추출물의 3T3-L1세포에 대한 지방 축적 저해 활성평가)

  • Kwon, Gi-Seok;Kim, Byung-Hyuk;Lee, Jun-Hyeong;Hwang, Hak-Soo;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.192-198
    • /
    • 2021
  • Red yeast rice has been extensively used as food and traditional medicine for thousands of years in East Asian countries. It is produced by the fermentation of a particular yeast (in general, Monascus purpureus) as rice and various cereals (barley, soybean, etc.). Monascus sp. produces many secondary metabolites during its growth, including pigments, monacolins, and γ-aminobutyric acid. Some metabolites―specifically, monacolin K, γ-aminobutyric acid, dimerumic acid, and monascus pigments―have been reported to lower cholesterol and blood pressure while showing anti-obesity effects. In this study, we investigated the anti-obesity effect of ethanol extract from red yeast barley (RYB) fermented with Monascus sp. BHN-MK 2 on 3T3-L1 cells. The anti-obesity effects of RYB extract were examined: its lipid accumulation inhibitory effect was tested by Oil Red O staining, and obesity-related mRNA expression levels were tested by real-time RT-PCR in MDI stimulated 3T3-L1 cells. The intracellular lipid content of MDI-stimulated 3T3-L1 cells decreased significantly to 5.04%, 12.24%, and 23.52% in response to 200, 400, and 800 ㎍/ml RYB, respectively. Moreovers, we evaluated that RYB extract significantly downregulated the expression of C/EBPα, SREBP-1, and PPAR-γ gene in a dose-dependent manner. As a result, red yeast barley ethanol extracts exerted the strongest anti-obesity effects. Also, the results indicate that red yeast barley could be used as a functional anti-obesity food material.

Transcriptional Regulation of Lipogenesis and Adipose Expansion (Lipogenesis와 adipose expansion의 전사조절)

  • Jang, Younghoon
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.318-324
    • /
    • 2022
  • PPARγ and C/EBPα are master adipogenic transcription factors (TFs) required for adipose tissue development. They control the induction of many adipocyte genes and the early phase of adipogenesis in the embryonic development of adipose tissue. Adipose tissue continues to expand after birth, which, as a late phase of adipogenesis, requires the lipogenesis of adipocytes. In particular, the liver and adipose tissues are major sites for de novo lipogenesis (DNL), where carbohydrates are primarily converted to fatty acids. Furthermore, fatty acids are esterified with glycerol-3-phosphate to produce triglyceride, a major source of lipid droplets in adipocytes. Hepatic DNL has been actively studied, but the DNL of adipocytes in vivo remains not fully understood. Thus, an understanding of lipogenesis and adipose expansion may provide therapeutic opportunities for obesity, type 2 diabetes, and metabolic diseases. In adipocytes, DNL gene expression is transcriptionally regulated by lipogenesis coactivators, as well as by lipogenic TFs such as ChREBP and SREBP1a. Recent in vivo studies have revealed new insights into the lipogenesis gene expression and adipose expansion. Future detailed molecular mechanism studies will determine how nutrients and metabolism regulate DNL and adipose expansion. This review will summarize recent updates of DNL in adipocytes and adipose expansion in terms of transcriptional regulation.

Non-alcoholic fatty liver protective effects, and studies on the mechanism of action of Crataegi Fructus (산사의 NAFLD 보호 효과 및 그 작용기전에 관한 연구)

  • Kim, Min-Chul;Kong, Ryong;Han, Hyoung-Sun;Kang, Dam-hee;Lee, Seung-Jin;Lee, Cheon-Cheon;Wang, Seo;Kwon, Dong-Yeul;Kang, Ok-Hwa
    • The Korea Journal of Herbology
    • /
    • v.33 no.6
    • /
    • pp.61-70
    • /
    • 2018
  • Objectives : Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of hepatic triglycerides (TG) that leads to inflammation and fibrosis. Crataegi Fructus ethanol extract (CE) is a korean traditional herb that used for digestive diseases. It has been investigated that CE has the effect that prevent hepatotoxicity caused by CCl4 or GaIN and regulate the inflammatory in several organs. However, a hypolipidemic effect of CF has not been reported. Methods : The purpose of this study is that examine the lipid accumulation inhibitory effect of CE on NAFLD. We checked the body and liver weight change of MCD-diet induced mice with/without administration of CE. The blood lipid levels of C57BL/6J mice were checked by biochemistry. Also we observed the liver histology of MCD-diet induced mice and investigate the molecular mechanisms in MCD-diet-induced NAFLD in C57BL/6J mice. Results : CE improved MCD-diet-induced lipid accumulation and TG and TC levels. Also, CE decreased hepatic lipogenesis such as SREBP-1, $C/EBP{\alpha}$, $PPAR{\gamma}$, ACC and FAS. Besides, we also found out that CE increased AMPK phosphorylation. These results indicated that CE has the same ability to activate AMPK and then reduce SREBP-1, and FAS expression, finally leading to inhibit hepatic lipogenesis and hepatic antioxidative ability. Conclusions : In this report, we found CE exerted a regulatory effect on lipid accumulation by decreasing lipogenesis in MCD-diet induced NAFLD model. Therefore, CE extract may be active in the prevention of fatty liver.

Effects of quercetin on the improvement of lipid metabolism through regulating hepatic AMPK and microRNA-21 in high cholesterol diet-fed mice (고콜레스테롤 식이 섭취 쥐에서 quercetin의 간 AMPK 및 microRNA-21 조절을 통한 지질대사 개선 효과)

  • Lee, Mak-Soon;Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.36-46
    • /
    • 2022
  • Purpose: Quercetin is a polyphenolic flavonoid abundant in many fruits and vegetables. It has potential health-beneficial properties, such as antioxidant, anti-obesity, anti-cancer, anti-diabetic and anti-inflammatory effects. The purpose of this study was to investigate whether the lipid metabolism improvement effect of quercetin affected the regulation of AMP-activated protein kinase (AMPK) activity and microRNA (miR)-21 expression in the liver of mice fed a high-cholesterol diet. Methods: Male C57BL/6J mice were fed with normal diet, quercetin-free diet and diets containing 0.05% or 0.1% quercetin for six weeks. Hypercholesterolemia was induced by adding 1% cholesterol and 0.5% cholic acid to all diets. Serum and liver triglyceride (TG), and total cholesterol (TC) concentrations were analyzed using a commercial enzymatic colorimetric kit. AMPK activity was quantified using an AMPK kinase assay kit. The levels of miR-21 and genes involved in lipid metabolism were measured by real-time quantitative polymerase chain reaction. Results: Supplementation of quercetin reduced serum and hepatic TG and TC levels without changing body weight and food intake. Dietary quercetin significantly inhibited the mRNA levels of hepatic sterol-regulatory element binding protein-1c, acetyl-CoA carboxylase 1 and fatty acid synthesis, which are involved in hepatic lipogenesis. Dietary quercetin enhanced AMPK activity and suppressed miR-21 expression, promoting hepatic lipid accumulation. Conclusion: These results suggest that the lipid-lowering effect of quercetin on the serum and liver of mice may be partially mediated by the regulation of lipogenic gene expression, AMPK activity and miR-21 expression in the liver of mice fed a high-cholesterol diet.

Anti-Obesity Effects of Gastrodia elata Extracts on High Fat Diet-Induced Obese Mice (고지방식이 유도 비만 마우스에서 천마 추출물의 항비만 효과)

  • Kim, Ye-Seul;Kim, Ha-Rim;Park, Eun-Hee;Song, Young-Eun;Kim, Chang-Su;Ha, Won-Bae;Woo, Hyeon-Jun;Han, Yun-Hee;Lee, Jung-Han
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.32 no.4
    • /
    • pp.1-8
    • /
    • 2022
  • Objectives This study is to investigate the effects and mechanisms of Gastrodia elata extract (GEE) on the high-fat diet-induced obesity model. Methods C57BL/6 mice were randomly assigned into 5 groups (n=10). Control group was fed normal diet (ND). Obesity group was fed 60% high fat diet (HFD). The other three groups were fed HFD with 100, 200, 500 mg/kg GEE. After five weeks, body weight, liver and epididymal fat weight, triglyceride concentration in liver and serum, sterol regulatory element-binding protein-1 (SREBP-1), acetyl-CoA carboxylase (ACC), fatty acid synthase, peroxisome proliferator-activated receptor 𝛾 (PPAR-𝛾), CCAAT/enhancer binding protein 𝛼 (C/EBP-𝛼) expression level, insulin concentration in serum were measured. Results The GEE (100, 200, and 500 mg/kg)-treated animals exhibited substantial decreases in body mass, liver weight and epididymal white adipose tissue collate to the HFD-fed group. GEE treatment also reduced hepatic and serum triglyceride level. Furthermore, GEE treatment significantly inhibited adipogenesis in the GEE group by reducing the protein expression of SREBP-1, ACC and the messenger RNA expression of PPAR𝛾, C/EBP-𝛼, which are adipocyte differentiation-related genes. Conclusions These research outcomes recommend that GEE is possibly valuable for the prevention of HFD-induced obesity via modification of various pathways related with adipogenesis and adipocyte differentiation.

Anti-cholesterol Effects and Molecular Mechanism Study of Mixture of Atractylodes Macrocephala and Amomum Villosum Extracts (백출과 양춘사 추출 혼합물의 항콜레스테롤 효과 및 기전 연구)

  • Ha Rim, Kim;Ye Seul, Kim;Kang Beom, Kwon;Hyun Jong, Jung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.5
    • /
    • pp.181-186
    • /
    • 2022
  • Atractylodes macrocephala (AM) and Amomum villosum (AV) are the most common herbs in Korean Medicine to treat digestive diseases. In this study, we investigated the cholesterol lowering effects of mixtures of AM and AV extracts on high cholesterol diet (HCD) induced dyslipidemia mouse model. We classified animals into six different groups; Group 1: Normal diet, Group 2: HCD, Group 3: AV extracts : AM extracts (1:1) (200 mg/kg) + HCD, Group 4: AV extracts : AM extracts (1:2) (200 mg/kg) + HCD, Group 5: AV extracts : AM extracts (1:3) (200 mg/kg) + HCD, Group 6: Simvastatin 40 mg/kg + HCD. After 4 weeks of oral administration of respective drugs, we checked body, liver and epididymal fatweights along with liver and serum triacylglyceride (TG) concentration, total and low density lipoprotein (LDL) cholesterol in serum. Moreover, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR), LDL receptor (LDLR), and sterol regulatory element-binding protein 2 (SREBP2) were detected by RT PCR or western blot analysis. The overall results showed that mixtures of AM and AV extracts inhibited HCD-induced increases of total cholesterol and LDL cholesterol in serum. Those effects seem to be caused by AM and AV extracts through inhibition of HMGCR expression. And thus blood cholesterol is induced into the liver by increasing LDLR expression, which is regulated by SREBP2 transcrption factor. The cholesterol lowering effects and mechanism of mixtures of AM and AV extracts was similar to the statin. We have identified the potential mixtures of AM and AV extracts as a new treatment for dyslipidemia.