• 제목/요약/키워드: SRC-3

검색결과 209건 처리시간 0.022초

The SH3 Domain of Phospholipase C-${\gamma}1$ Associates with Shc

  • Kim, Myung-Jong;Hwang, Jong-Ik;Chang, Jong-Soo;Ryu, Sung-Ho;Suh, Pann-Ghill
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.119-126
    • /
    • 1999
  • The SH3 domain of PLC-${\gamma}1$ has been known to induce DNA synthesis. However, little is known about the putative effector proteins that associate with the domain. In this report, we provide evidence that the SH3 domain of PLC-${\gamma}1$ associates with Shc, which has been implicated in the activation of p21Ras in response to many growth factors. The association between Shc and PLC-${\gamma}1$ is enhanced either by v-Src-induced transformation or EGF-stimulation in vivo and in vitro. Furthermore, from transient expression studies with COS-7 cells, we show that the SH3 domain of PLC-${\gamma}1$ is required for association with Shc in vivo, whereas tyrosyl phosphorylation of PLC-${\gamma}1$ is not. Taken together, we suggest that Shc might be involved in the PLC-${\gamma}1$-mediated signaling pathway.

  • PDF

Self-renewal and circulating capacities of metastatic hepatocarcinoma cells required for collaboration between TM4SF5 and CD44

  • Lee, Doohyung;Lee, Jung Weon
    • BMB Reports
    • /
    • 제48권3호
    • /
    • pp.127-128
    • /
    • 2015
  • Tumor metastasis involves circulating and tumor-initiating capacities of metastatic cancer cells. Hepatic TM4SF5 promotes EMT for malignant growth and migration. Hepatocellular carcinoma (HCC) biomarkers remain unexplored for metastatic potential throughout metastasis. Here, novel TM4SF5/CD44 interaction-mediated self-renewal and circulating tumor cell (CTC) capacities were mechanistically explored. TM4SF5-dependent sphere growth was correlated with $CD133^+$, $CD24^-$, ALDH activity, and a physical association between CD44 and TM4SF5. The TM4SF5/CD44 interaction activated c-Src/STAT3/ Twist1/ B mi1 signaling for spheroid formation, while disturbing the interaction, expression, or activity of any component in this signaling pathway inhibited spheroid formation. In serial xenografts of less than 5,000 cells/injection, TM4SF5-positive tumors exhibited locally-increased CD44 expression, suggesting tumor cell differentiation. TM4SF5-positive cells were identified circulating in blood 4 to 6 weeks after orthotopic liver-injection. Anti-TM4SF reagents blocked their metastasis to distal intestinal organs. Altogether, our results provide evidence that TM4SF5 promotes self-renewal and CTC properties supported by $CD133^+/TM4SF5^+/CD44^+^{(TM4SF5-bound)}/ALDH^+/CD24^-$ markers during HCC metastasis.

워킹코일 온도 및 제어 속응성을 고려한 All-Metal Domestic Induction Heating 제어 시스템 설계 (Design of Control System for All-Metal Domestic Induction Heating Considering Temperature and Quick-Response)

  • 박상민;장은수;주동명;이병국
    • 전력전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.199-207
    • /
    • 2018
  • In this paper, an all-metal domestic induction heating (IH) system that can quickly identify ferromagnetic and non-ferromagnetic pots considering temperature changes in the working coil is designed. Load modeling is performed after analyzing the parameters of the pot material and the central misalignment of the working coil. To improve the performance and stability of the all-metal IH cooking heater, a power curve-fitting model is used to design a control system that quickly responds to load parameter fluctuations. In addition, a power control algorithm is established to compensate for the reference value by reflecting the increase in working coil temperature during heating of the non-ferromagnetic pot. The validity of the proposed control algorithm for the all-metal IH is verified by experiments using a 3.2 kW all-metal IH cooking heater.

Endocytic Regulation of EGFR Signaling

  • Chung, Byung-Min
    • Interdisciplinary Bio Central
    • /
    • 제4권2호
    • /
    • pp.3.1-3.7
    • /
    • 2012
  • Epidermal growth factor receptor (EGFR) is a member of the ErbB family (ErbB1-4) of receptor tyrosine kinases (RTKs). EGFR controls numerous physiological functions, including cell proliferation, migration, differentiation and survival. Importantly, aberrant signaling by EGFR has been linked to human cancers in which EGFR and its various ligands are frequently overexpressed or mutated. EGFR coordinates activation of multiple downstream factors and is subject of various regulatory processes as it mediates biology of the cell it resides in. Therefore, many studies have been devoted to understanding EGFR biology and targeting the protein for the goal of controlling tumor in clinical settings. Endocytic regulation of EGFR offers a promising area for targeting EGFR activity. Upon ligand binding, the activated receptor undergoes endocytosis and becomes degraded in lysosome, thereby terminating the signal. En route to lysosome, the receptor becomes engaged in activating various signaling pathways including PI-3K, MAPK and Src, and endocytosis may offer both spatial and temporal regulation of downstream target activation. Therefore, endocytosis is an important regulator of EGFR signaling, and increasing emphasis is being placed on endocytosis in terms of cancer treatment and understanding of the disease. In this review, EGFR signaling pathway and its intricate regulation by endocytosis will be discussed.

p62, a Phosphotyrosine Independent Ligand of SH2 Domain of $p56^{Ick}$, is Cleaved by Caspase-3 during Apoptosis in Jurkat Cells

  • Joung, Insil
    • Animal cells and systems
    • /
    • 제5권2호
    • /
    • pp.145-151
    • /
    • 2001
  • p62 is a phosphotyrosine-independent ligand of the SH2 domain of $p56^{Ick}$, a T-cell specific Src family tyrosine kinase. Recently p62 has been shown to interact with a number of proteins, such as $PKC\varsigma$ and ubiquitin, and implicated in important cellular functions such as cell proliferation. Since the two p62 interacting proteins, $p56^{Ick}$ and $PKC\varsigma$, have been reported to play roles in cell death, 1 have addressed the potential role of p62 during apoptosis in Jurkat cells in this study. Herein 1 show that p62 was specifically cleaved into two peptides by a caspase-3-like activity during Fas-receptor mediated apoptosis in Jurkat cells. This cleavage generated two fragments with molecular weights of about 35 kDa that differed in subcellular localizations. The N-terminal cleaved fragment was present in the detergent-insoluble fraction whereas the C-terminal fragment was found in the detergent-soluble fraction. In addition, the C-terminal fragment appeared to be subjected to further degradation as apoptosis prolonged. Moreover, overexpression of p62 in Jurkat cells attenuated the Fas receptor mediated apoptosis, suggesting that p62 is involved in apoptotic signal transduction pathway in lymphocytes.

  • PDF

Experimental research on seismic behavior of novel composite RCS joints

  • Men, Jinjie;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.209-221
    • /
    • 2015
  • Results from an experimental study on the seismic response of six composite reinforced concrete column-to-steel beam interior joints are presented. The primary variable investigated is the details in the joint. For the basic specimen, the main subassemblies of the beam and column are both continuous, and the steel beam flanges extended to the joint are partly cut off. Transverse beam, steel band plates, cove plates, X shape reinforcement bars and end plates are used in the other five specimens, respectively. After the joint steel panel yielded, two failure modes were observed during the test: local failure in Specimens 1, 2 and 4, shear failure in Specimens 3, 5 and 6. Specimens 6, 3, 5 and 4 have a better strength and deformation capacity than the other two specimens for the effectiveness of their subassemblies. For Specimens 2 and 4, though the performance of strength degradation and stiffness degradation are not as good as the other four specimens, they all have excellent energy dissipation capacity comparing to the RC joint, or the Steel Reinforced Concrete (SRC) joint. Based on the test result, some suggestions are presented for the design of composite RCS joint.

Overexpression of GAP Causes the Delay of NGF-induced Neuronal Differentiation and the Inhibition of Tyrosine Phosphorylation of SNT in PC12 Cells

  • Yang, Sung-Il;Kaplan, David
    • BMB Reports
    • /
    • 제28권4호
    • /
    • pp.316-322
    • /
    • 1995
  • The GTPase activating protein (GAP) can function both as a negative regulator and an effector of $p21^{ras}$. Overexpression of GAP in NIH-3T3 cells has been shown to inhibit transformation by ms or src. To investigate the function of GAP in a differentiative system, we overexpressed this protein in the nerve growth factor (NGF)-responsive PC12 cell line. Two-fold overexpression of GAP caused a delay of several days in the onset of NGF- but not FGF-induced neuronal differentiation of PC12 cells. However, the NGF-induced activation or tyrosine phosphorylation of upstream (Trk, PLC-${\gamma}1$, SHC) and downstream (B-Raf and $p44^{mapk/erk1}$) components of $p21^{ras}$, signalling cascade was not altered by GAP overexpression. Therefore, the change of phenotype induced by GAP was probably not due to GAP functioning as a negative regulator of $p21^{ras}$. Rather, we found that NGF-induced tyrosine phosphorylation of SNT, a specific target of neurotrophin-induced tyrosine kinase activity, was inhibited by GAP overexpression. SNT is thought to function upstream or independent of $p21^{ras}$. Thus in PC12 cells, overexpressed GAP may control the rate of neuronal differentiation through a pathway involving SNT rather than the $p21^{ras}$ signalling pathway.

  • PDF

창의적연구진흥사업 사업평가 및 분석 (The Program Evaluation and Analysis of Creative Research Initiatives)

  • 변명문
    • 기술혁신연구
    • /
    • 제12권1호
    • /
    • pp.161-188
    • /
    • 2004
  • The objective of this research is to evaluate the Creative Research Initiative Program (CRI), a national R&D program funded by the Ministry of Science & Technology in Korea. The evaluation of CRI covers the following research questions; 1) Have it set a unique position and characteristic distinguished from other government-funded R&D programs\ulcorner 2) Are the achievements of the program relevant to its goal\ulcorner 3) What is its performances and how much is it achieved its goal\ulcorner The results are the followings; 1) CRI is perceived as a pure basic research, distinguished from other national basic research programs, such as the Coal Oriented Basic Research Program and the SRC and ERC. 2) CRI is a well-adapted R&D program in confront of the environmental changes and R&D needs, as well as follows the planned R&D areas. 3) CRI have performed well in the raising-up world-class research leaders and the nation-wide diffusion of creative R&D culture, while it got few performances in the overcoming the limitation of the existing technologies and the independent development of original key technologies for future industries. However, the duration of the program, 5 year, is too short to expect concrete outcome, such as creating original technologies. Many of the outcomes of CRI gets a lot of attention from top class scientists in the world, it is expected to generate various R&D performances in the future.

  • PDF

A Combined Procedure of RSM and LHS for Uncertainty Analyses of CsI Release Fraction Under a Hypothetical Severe Accident Sequence of Station Blackout at Younggwang Nuclear Power Plant Using MAAP3.0B Code

  • Han, Seok-Jung;Tak, Nam-Il;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.507-521
    • /
    • 1996
  • Quantification of uncertainties in the source term estimations by a large computer code, such as MELCOR and MAAP, is an essential process of the current Probabilistic safety assessment. The main objective of the present study is to investigate the applicability of a combined procedure of the response surface method (RSM) based on input determined from a statistical design and the Latin hypercube sampling (LHS) technique for the uncertainty analysis of CsI release fractions under a Hypothetical severe accident sequence of a station blackout at Younggwang nuclear power plant using MAAP3. OB code as a benchmark problem. On the basis of the results obtained in the present work, the RSM is recommended to be used as a principal tool for an overall uncertainty analysis in source term quantifications, while using the LHS in the calculations of standardized regression coefficients (SRC) and standardized rank regression coefficient (SRRC) to determine the subset of the most important input parameters in the final screening step and to check the cumulative distribution functions obtained by RSM. Verification of the response surface model for its sufficient accuracy is a prerequisite for the reliability of the final results that can be obtained by the combined procedure proposed in the present work.

  • PDF

Seismic experiment and analysis of rectangular bottom strengthened steel-concrete composite columns

  • Hui, Cun;Zhu, Yanzhi;Cao, Wanlin;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.599-621
    • /
    • 2016
  • In order to study the working mechanism of rectangular steel-concrete composite columns subjected to compression-bending load and further determine the seismic performance index, a bottom strengthened rectangular steel reinforced concrete (SRC) column with concealed steel plates and a bottom strengthened rectangular concrete filled steel tube (CFST) columns were proposed. Six column models with different configurations were tested under horizontal low cyclic loading. Based on the experiments, the load-bearing capacity, stiffness and degradation process, ductility, hysteretic energy dissipation capacity, and failure characteristics of the models were analyzed. The load-bearing capacity calculation formulas for a normal section and an oblique section of bottom strengthened rectangular steel-concrete composite columns were pesented and a finite element (FE) numerical simulation of the classical specimens was performed. The study shows that the load-bearing capacity, ductility, and seismic energy dissipation capacity of the bottom strengthened rectangular steel-concrete composite columns are significantly improved compared to the conventional rectangular steel-concrete composite columns and the results obtained from the calculation and the FE numerical simulation are in good agreement with those from the experiments. The rectangular steel-concrete composite column with bottom strengthened shows better seismic behavior and higher energy dissipation capacity under suitable constructional requirements and it can be applied to the structure design of high-rise buildings.