• Title/Summary/Keyword: SR $Ca^{2+}-ATPase$

Search Result 29, Processing Time 0.019 seconds

Decrease in $Ca^{2+}$ Storage in the Cardiac Sarcoplasmic Reticulum of Diabetic Rat

  • Kim, Won-Tae;Kim, Hae-Won;Kim, Young-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.725-732
    • /
    • 1998
  • In order to elucidate the molecular mechanism of the intracellular $Ca^{2+}$ overload frequently reported from diabetic heart, diabetic rats were induced by the administration of streptozotocin, the membrane vesicles of junctional SR (heavy SR, HSR) were isolated from the ventricular myocytes, and SR $Ca^{2+}$ uptake and SR $Ca^{2+}$ release were measured. The activity of SR $Ca^{2+}-ATPase$ was $562{\pm}14$ nmol/min/mg protein in control heart. The activity was decreased to $413{\pm}30$ nmol/min/mg protein in diabetic heart and it was partially recovered to $485{\pm}18$ nmol/min/mg protein in insulin-treated diabetic heart. A similar pattern was observed in SR $^{45}Ca^{2+}$ uptakes; the specific uptake was the highest in control heart and it was the lowest in diabetic heart. In SR $^{45}Ca^{2+}$ release experiment, the highest release, 45% of SR $^{45}Ca^{2+}$, was observed in control heart. The release of diabetic heart was 20% and it was 30% in insulin-treated diabetic heart. Our results showed that the activities of both SR $Ca^{2+}-ATPase$ and SR $Ca^{2+}$ release channel were decreased in diabetic heart. In order to evaluate how these two factors contribute to SR $Ca^{2+}$ storage, the activity of SR $Ca^{2+}-ATPase$ was measured in the uncoupled leaky vesicles. The uncoupling effect which is able to increase the activity of SR $Ca^{2+}-ATPase$ was observed in control heart; however, no significant increments of SR $Ca^{2+}-ATPase$ activities were measured in both diabetic and insulin-treated diabetic rats. These results represent that the $Ca^{2+}$ storage in SR is significantly depressed and, therefore, $Ca^{2+}-sequestering$ activity of SR may be also depressed in diabetic heart.

  • PDF

Caffeine Indirectly Activates Ca2+-ATPases in the Vesicles of Cardiac Junctional Sarcoplasmic Reticulum

  • Kim, Young-Kee;Cho, Hyoung-Jin;Kim, Hae-Won
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.22-26
    • /
    • 1996
  • Agents that activate or inhibit the $Ca^{2+}$ release channel in cardiac sarcoplasmic reticulum (SR) were tested for their abilities to affect the activity of the SR $Ca^{2+}$-ATPase. Vesicles of junctional SR (heavy SR, HSR) from terminal cisternae were prepared from porcine cardiac muscle by density gradient centrifugation. The steady-state activity of $Ca^{2+}$-ATPases in intact HSR vesicles was/$347{\pm}5\;nmol/min{\cdot}mg$ protein (${\pm}$ SD). When the HSR vesicles were made leaky, the activity was increased to $415{\pm}5\;nmol/min{\cdot}mg$ protein. This increase is probably due to the uncoupling of HSR vesicles. Caffeine (10 mM), an agonist of the SR $Ca^{2+}$ release channel, increased $Ca^{2+}$-ATPase activity in the intact HSR vesicle preparation to $394{\pm}30\;nmol/min{\cdot}mg$ protein. However, caffeine had no significant effect in the leaky vesicle preparation and in the purified $Ca^{2+}$-ATPase preparation. The effect of caffeine on SR $Ca^{2+}$-ATPase was investigated at various concentrations of $Ca^{2+}$. Caffeine increased the pump activity over the whole range of $Ca^{2+}$ concentrations, from $1\;{\mu}M$ to $250\;{\mu}M$, in the intact HSR vesicles. When the SR $Ca^{2+}$-ATPase was inhibited by thapsigargin, no caffeine effect was observed. These results imply that the caffeine effect requires the intact vesicles and that the increase in $Ca^{2+}$-ATPase activity is not due to a direct interaction of caffeine with the enzyme. We propose that the activity of SR $Ca^{2+}$-ATPase is linked indirectly to the activity of the $Ca^{2+}$ release channel (ryanodine receptor) and may depend upon the amount of $Ca^{2+}$ released by the channels.

  • PDF

Minimal Amount of Insulin Can Reverse Diabetic Heart Function: Sarcoplasmic Reticulum $Ca^{2+}$ Transport and Phospholamban Protein Expression

  • Kim, Hae-Won;Cho, Yong-Sun;Lee, Yun-Song;Lee, Eun-Hee;Lee, Hee-Ran
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.175-182
    • /
    • 1999
  • In the present study, the underlying mechanisms for diabetic functional derangement and insulin effect on diabetic cardiomyopathy were investigated with respect to sarcoplasmic reticulum (SR) $Ca^{2+}-ATPase$ and phospholamban at the transcriptional and translational levels. The maximal $Ca^{2+}$ uptake and the affinity of $Ca^{2+}-ATPase$ for $Ca^{2+}$ were decreased in streptozotocin-induced diabetic rat cardiac SR, however, even minimal amount of insulin could reverse both parameters. Levels of both mRNA and protein of phospholamban were significantly increased in diabetic rat hearts, whereas the mRNA and protein levels of SR $Ca^{2+}-ATPase$ were significantly decreased. In case of phospholamban, insulin treatment reverses these parameters to normal levels. Minimal amount of insulin could reverse the protein levels; however, it could not reverse the mRNA level of SR $Ca^{2+}-ATPase$ at all. Thus, the decreased SR $Ca^{2+}$ uptake appear to be largely attributed to the decreased SR $Ca^{2+}-ATPase$ level, which is further impaired due to the inhibition by the increased level of phospholamban. These results indicate that insulin is involved in the control of intracellular $Ca^{2+}$ in the cardiomyocyte through multiple target proteins via multiple mechanisms for the decrease in the mRNA for both SR $Ca^{2+}-ATPase$ and phospholamban which are unknown and needs further study.

  • PDF

Thyroid Hormone-Induced Alterations of $Ca^{2+}-ATPase$ and Phospholamban Protein Expression in Cardiac Sarcoplasmic Reticulum

  • Kim, Hae-Won;Noh, Kyung-Min;Park, Mi-Young;Lee, Hee-Ran;Lee, Eun-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.223-230
    • /
    • 1999
  • Alterations of cardiovascular function associated with various thyroid states have been studied. In hyperthyroidism left ventricular contractility and relaxation velocity were increased, whereas these parameters were decreased in hypothyroidism. The mechanisms for these changes have been suggested to include alterations in the expression and/or activity levels of various proteins; ${\alpha}-myosin$ heavy chain, ${\beta}-myosin$ heavy chain, ${\beta}-receptors,$ the guanine nucleotide-binding regulatory protein, and the sarcolemmal $Ca^{2+}-ATPase.$ All these cellular alterations may be associated with changes in the intracellular $Ca^{2+}$ concentration. The most important regulator of intracellular $Ca^{2+}$ concentration is the sarcoplasmic reticulum (SR), which serves as a $Ca^{2+}$ sink during relaxation and as a $Ca^{2+}$ source during contraction. The $Ca^{2+}-ATPase$ and phospholamban are the most important proteins in the SR membrane for muscle relaxation. The dephosphorylated phospholamban inhibits the SR $Ca^{2+}-ATPase$ through a direct interaction, and phosphorylation of phospholamban relieves the inhibition. In the present study, quantitative changes of $Ca^{2+}-ATPase$ and phospholamban expression and the functional consequences of these changes in various thyroid states were investigated. The effects of thyroid hormones on (1) SR $Ca^{2+}$ uptake, (2) phosphorylation levels of phospholamban, (3) SR $Ca^{2+}-ATPase$ and phospholamban protein levels, (4) phospholamban mRNA levels were examined. Our findings indicate that hyperthyroidism is associated with increases in $Ca^{2+}-ATPase$ and decreases in phospholamban levels whereas opposite changes in these proteins occur in hypothyroidism.

  • PDF

Changes in the Expressional Levels of Sarcoplasmic Reticulum $Ca^{2+}-regulatory$ Proteins in the Postnatal Developing Rat Heart

  • Lee, Eun-Hee;Park, Soo-Sung;Lee, Jae-Sung;Seo, Young-Ju;Kim, Young-Hoon;Kim, Hae-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.2
    • /
    • pp.101-107
    • /
    • 2002
  • In the present study, the postnatal developmental changes in the expressional levels of cardiac sarcoplasmic reticulum (SR) $Ca^{2+}$ regulatory proteins, i.e. $Ca^{2+}-ATPase,$ phospholamban, and $Ca^{2+}$ release channel, were investigated. Both SR $Ca^{2+}-ATPase$ and phospholamban mRNA levels were about 35% of adult levels at birth and gradually increased to adult levels. Protein levels of both SR $Ca^{2+}-ATPase$ and phospholamban, which were measured by quantitative immunoblotting, were closely correlated with the mRNA levels. The initial rates of $Ca^{2+}$ uptake at birth were about 40% of adult rates and also increased gradually during the myocardial development. Consequently, the relative phospholamban/$Ca^{2+}-ATPase$ ratio was 1 in developmental hearts. $Ca^{2+}$ release channel (ryanodine receptor) mRNA was about $50{\sim}60%$ at birth and increased gradually to adult level throughout the postnatal rat heart development. $^3[H]ryanodine$ binding increased gradually during postnatal myocardial development, which was closely correlated with ryanodine mRNA expression levels during the development except the ryanodine mRNA level at birth. These findings indicate that cardiac SR $Ca^{2+}-ATPase,$ phospholamban, and $Ca^{2+}$ release channel are expressed coordinately, which may be necessary for intracellular $Ca^{2+}$ regulation during the rat heart development.

Effect of a Phospholamban Peptide on the Skeletal Sarcoplasmic Reticulum $Ca^{2+}$ Transport (골격근 근장그물 칼슘이동에 대한 Phospholamban 펩타이드의 조절)

  • Kim, Hae-Won;Lee, Hee-Ran
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.117-124
    • /
    • 1994
  • Phospholamban is the regulator of $Ca^{2+}-ATPase$ in cardiac sarcoplasmic reticulum(SR). The mechanism of regulation appears to involve inhibition by dephosphorylated phospholamban. Phosphorylation of phospholamban relieves this inhibition. Recently, there has been a report that the cytoplasmic domain (amino acids 1-25) of phospholamban is insufficient to inhibit the $Ca^{2+}$ pump. To explore the domains of phospholamban responsible for $Ca^{2+}-ATPase$ inhibitory activity, we examined the effect of a synthetic phospholamban peptide consisting of amino acid residues 1-25 on $Ca^{2+}$ uptake by reconstituted skeletal SR $Ca^{2+}-ATPase$. The $Ca^{2+}-ATPase$ of skeletal SR was purified and reconstituted in proteoliposomes containing phosphatidylcholine (PC) or phosphatidylcholine: phosphatidylserine (PC:PS). Inclusion of a phospholamban peptide in PC proteoliposomes was associated with significant inhibition of the initial rates of $Ca^{2+}$ uptake at pCa 6.0, and phosphorylation of this peptide by the catalytic subunit of cAMP-dependent protein kinase reversed the inhibitory effect on the $Ca^{2+}$ pump. Similar effects of phospholamban peptide were also observed using PC:PS proteoliposomes. Based on these results, we could conclude that the cytoplasmic domain of phospholamban, containing the phosphorylation sites, by itself is sufficient to inhibit the $Ca^{2+}$ pump of SR.

  • PDF

The Effects of Physical States of Phospholipids on $Ca^{2+}$-ATPase Activity of Biological Membranes (지질의 물리학적 성상이 $Ca^{2+}$-ATPase 활성도에 미치는 영향)

  • Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.163-177
    • /
    • 1988
  • The $Ca^{2+}-ATPase$ of sarcoplasmic reticulum (SR) was solubilized and reconstituted into a mixture of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of varying ratios in order to assess the effect of physical states of phospholipids on the incorporation and functions $Ca^{2+}-ATPase$. On the basis of the spectral data of Ca-arsenazo III, the $Ca^{2+}$ uptake of SR was increased linearly as the PC content increased in the reconstituted vesicles. The ATP hydrolysis activity also increased as PC content increased up to 25% and then decreased slightly as the PC content further increased. On the other hand the incorporation of $Ca^{2+}-ATPase$ into the reconstituted vesicls occured maximally at 25% PC and 75% PE mixture which is known to have a non-bilayer structure in reconstitution system. From the above results it is clear that preexisting defects in the lipid bilayer promote protein incorporation into the bilayer during reconstitution and lamellar structure of the bilayer facilitates the $Ca^{2+}-ATPase$ function.

  • PDF

Diabetic Alterations in Cardiac Sarcoplasmic Reticulum $Ca^{2+}$-ATPase and Phospholamban Protein Expression

  • Lee, Hee-Ran;Cho, Yong-Sun;Park, So-Young;Kim, Young-Hoon;Kim, Hae-Won
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.66-66
    • /
    • 2001
  • Diabetic cardiomyopathy has been suggested to be caused by abnormal intracellular $Ca^{2+}$ homeostasis in the myocardium, which is partly due to a defect in calcium transport by the cardiac sarcoplasmic reticulum (SR). In the present study, the underlying mechanism for this functional derangement was investigated with respect to SR $Ca^{2+}$-ATPase and phospholamban (PLB, the inhibitor of SR $Ca^{2+}$-ATPase).(omitted)d)

  • PDF

Enzymatic Properties of Low Affinity Vanadate-sensitive ATPase in the Microsomes of Tracheal Epithelial Cells

  • Jung Sakong;Kim, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.29-29
    • /
    • 1998
  • Previously, we reported two types of vanadate-sensitive ATPases in the micro somes of tracheal epithelial cells, a high-affinity one and a low-affinity one. The low affinity vanadate-sensitive (LAVS) ATPase was sensitive to thapsigargin and cyclopiazonic acid, specific antagonists of ER-type Ca$\^$2+/-ATPase, and mediated microsomal $\^$45/Ca$\^$2+/ uptake, implying that the LAVS-ATPase is an ER/SR-type Ca$\^$2+/-ATPase.(omitted)

  • PDF

Inhibitory Effects of Monovalent Cations on the Microsomal $Ca^{2+}$-ATpase in Tracheal Epithelial Cells

  • Cho, Kwang-Hyun;Kim, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.48-48
    • /
    • 1999
  • Two types of vanadate-sensitive $Ca^{2+}$-ATPases have been characterized in the microsomes of tracheal epithelial cells, a high affinity vanadate-sensitive (HA VS) and a low affinity vanadate-sensitive (LAVS) $Ca^{2+}$-ATPases. The LA VS $Ca^{2+}$-ATPase was sensitive to thapsigargin, implying that it is an ER/SR-type $Ca^{2+}$-ATPase.(omitted)d)

  • PDF