• Title/Summary/Keyword: SQUID magnetometer

Search Result 75, Processing Time 0.019 seconds

Magnetic dipole model in an eddy current flow detection for a Nondestructive evaluation

  • Han, S.G.;Kim, J.Y.;Kang, J.H.
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.26-30
    • /
    • 1999
  • A SQUID magnetometer or a SQUID gradiometer can be used to measure the field or gradient distribution respectively. We describe the magnetic dipole model of the eddy current for the nondestructive evaluation. Such a theoretical calculation of the magnetic dipole field produced by a deep flaw in matalic materials can be used for aerospace and transportation fields.

  • PDF

High $T_c$ SQUID system for biological immunoassays

  • Enpuku, K.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.7-7
    • /
    • 2000
  • A high $T_c$ SQUID system is developed for the application to biological immunoassay. In this application, magnetic nanoparticles are used as magnetic markers to perform immunoassay, i.e., to detect binding reaction between an antigen and its antibody. The antibody is labeled with ${\gamma}-Fe_2O_3\;(or\;Fe_3O_4)$ nanoparticles, and the binding reaction can be magnetically detected by measuring the magnetic field from the nanoparticles. Design and set up of the system is described. The system consists of (1) SQUID magnetometer or gradiometer made of 30-deg. bicrystal junctions, (2) field and compensation coils to apply the magnetic field of about 1 mT, (3) special Dewar to realize a 2 mm-distance between the SQUID and the sample, (4) two layers of cylindrical shielding to reduce the extemal magnetic noise to about 1/100, and (5) an electric slider to move the sample with a speed of 10 mm/sec. The sensitivity of the system is studied in terms of detectable magnetic flux. For the measurement bandwidth from 0.2 Hz to 10 Hz, minimum-detectable amplitude of the magnetic flux is $0.8\;m\;{\Phi}_o$ and $0.25\;m{\Phi}_o$ for the magnetometer and the gradiometer, respectively, when the magnetic field of 1 mT is applied. The difference between them is due to the residual environmental noise, and the applied magnetic field does not increase the system noise. The corresponding weight of the magnetic markers is 1 ng and 310 pg, respectively. An experiment is also conducted to measure antigen-antibody reaction with the present system. It is shown that the sensitivity of the present system is 10 times better than that of the conventional method using an optical marker. A one order of magnitude improvement of sensitivity will be realized by the sophistication of the present system.

  • PDF

Fabrication of HTS SQUID Sensors for the Application to a High S/N Ratio Magnetocardiograph System (저잡음 심자도측정시스템 개발을 위한 고온초전도 SQUID 센서의 제작)

  • Kim I. S;Yu K. K;Park Y. K
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.19-23
    • /
    • 2004
  • YBCO do superconducting quantum interference device (SQUID) magnetometers based on bicrystal Josephson junctions on 10 mm ${\times}$ 10 mm $SrTiO_3$ substrates have been fabricated. The pickup coil of the device was designed to have 16 parallel loops with 50-fm-wide lines. We could obtain optimised direct coupled YBCO SQUID magnetometer design with field sensitivity $B_{N}$ $\Phi$/ of $4.5 nT/\Phi_{0}$ and magnetic field noise $B_{N}$ of about $22 fT/Hz^{1}$2/ with an I/f corner frequency of 2 Hz measured inside a magnetically shielded room. Preliminary results of magnetocardiograph measurement using the HTS SQUID magnetometers show signal to noise ratio of about 110, which is comparable to the quality of a commercial MCG system based on Nb-SQUIDs.

  • PDF

YBCO step-edge junction dc SQUID magnetometers with multi-loop pickup coil fabricated on sapphire substrates (사파이어 기판을 사용한 병렬 검출코일 구조의 계단형 모서리 접합 SQUID 자력계)

  • 황태종;김인선;김동호;박용기
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.94-97
    • /
    • 2004
  • Step-edge Josephson junctions (SEJ) have been fabricated on sapphire substrates with in situ deposited films of CeO$_2$ buffer layer and YBa$_2$Cu$_3$O$_{7}$ films on the low angle steps. Direct coupled SQUID magnetometers with the SEJ were formed on 1 cm X 1 cm R-plane sapphire substrates. Typical 5-${\mu}{\textrm}{m}$-wide Josephson junctions have R$_{N}$ of 3 Ω and I$_{c}$ of 50 $mutextrm{A}$ at 77 K. The direct coupled SQUID magnetometers were designed to have pickup coils of 50-${\mu}{\textrm}{m}$-wide 16 parallel loops on the 1 cm X 1 cm substrates with outer dimension of 8.8 mm X 8.8 mm. The SEJ SQUID magnetometers exhibit relatively low 1/f noise even with dc bias control, and could be stably controlled by flux-locked loops in the magnetically disturbed environment. Field noise of the do SQUID was measured to be 200∼300 fT/Hz$^{1}$2/in the white noise region and about 2 pT/Hz$^{1}$2/ at 1 Hz when measured with dc bias method.hod.d.

  • PDF

Integrated 3-Channel Flux-Locked-Loop Electronics for the Readout of High-$T_c$ SQUID (고온초전도 SQUID 신호 검출을 위한 3채널용 FLL 회로)

  • 김진목;김인선;유권규;박용기
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.55-60
    • /
    • 2003
  • We designed and constructed integrated 3-channel flux-locked-loop (FLL) electronic system for the control and readout of high-T$_{c}$ SQUIDs. This system consists of low noise preamplifiers, integrators, interface circuits, and software. FLL operation was carried out with biased signals of 19 KHz modulated current and 150 KHz modulated flux, which are reconstructed as detected signals by preamplifier and demodulator. Computer controlled interface circuits regulate FLL circuit and adjust SQUID parameters to the optimum operating condition. The software regulates interface circuits to make an auto-tuning for the control of SQUIDs, and displays readout data from FLL circuit. 3-channel SQUID electronic system was assembled with 3 FLL-interface circuit boards and a power supply board in the aluminum case of 56 mm ${\times}$ 53 mm${\times}$ 150 mm. Overall noise of the system was around 150 fT/(equation omitted)Hz when measured in the shielded room, 200 fT/(equation omitted)Hz in a weakly shielded room, respectively.y.

  • PDF

Construction and Operation of a 37-channel Hemispherical Magnetoencephalogram System (37채널 반구형 뇌자도 측정장치 제작 및 동작)

  • 이용호;김진목;권혁찬;김기웅;박용기;강찬석;이순걸
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.159-165
    • /
    • 2003
  • We developed a 37-channel magnetoencephalogram (MEG) measurement system based on low-noise superconducting quantum interference device (SQUID) magnetometets, and operated the system to measure MEG signals. By using double relaxation oscillation SQUIDs with high flux-4o-voltage transfers, the SQUID outputs could be measured directly by room temperature preamplifiers and compact readout circuits were used for SQUID operation. The average field noise level of the magnetometers is about 3 fT/√Hz in the white region, low enough for MEG measurements when operated inside a magnetically shielded room. The 37 magnetometers were distributed on a hemispherical surface haying a radius of 125 mm. In addition to the 37 sensing channels. 11 reference channels were installed to pickup external noise and to form software gradiometers. A low-noise liquid helium dewar was fabricated with a liquid capacity of 30 L and boil-off rate of 4 L/d. The signal processing software consists of digital filtering, software gradiometer, isofield mapping and source localization. By using the developed system, we measured auditory-evoked fields and localized the current dipoles, demonstrating the effectiveness of the system.