• Title/Summary/Keyword: SPOT 5 image

Search Result 142, Processing Time 0.023 seconds

A NEW APPROACH OF CAMERA MODELING FOR LINEAR PUSHBROOM IMAGES

  • Jung, Hyung-Sup;Kang, Myung-Ho;Lee, Yong-Woong;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1162-1164
    • /
    • 2003
  • The methods of the geometric reconstruction and sensor calibration of satellite linear pushbroom images are investigated. The model of the sensor used is based on the SPOT model that is developed by Kraiky. The satellite trajectory is a Keplerian trajectory in the approximation. Four orbit parameters, longitude of the ascending node(${\omega}$), inclination of the orbit plan(I), latitude argument of the satellite(W) and distance between earth center and satellite, are used for the camera modeling. Time-dependent orbit parameters are expressed by quadratic polynomials. SPOT-5 images have been used for validation tests. The results are that the RMSE acquired from 20 GCPs is 1.763m and the RMSE of 5 checking points 2.470m. Because the ground resolution of SPOT-5 is 2.5m, the result obtained in this study has a good accuracy. It demonstrates that the sensor model developed by this study can be used to reconstruct the geometry of satellite image using pushbroom camera.

  • PDF

Automated Edge-based Seamline Extraction for Mosaicking of High-resolution Satellite Images (고해상도 위성영상 모자이킹을 위한 경계선 기반의 접합선 자동 추출)

  • Jin, Kyeong-Hyeok;Song, Yeong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.61-69
    • /
    • 2009
  • By the advent of the high resolution satellite imagery, a ground-coverage included by a single satellite image is decreased. By the reason, there are increasing needs in image mosaicking technology to use images to various GIS fields. This paper describes an edge-based seamline extraction algorithm using edge information such as rivers, roads, buildings for image mosaicking. For this, we developed a method to track and link discontinuous edges extracted by edge detection operator. To estimate the effectiveness of the proposed algorithm, we applied the algorithm to IKONOS, KOMPSAT-1 and SPOT-5 satellite images. The experimental results showed that the algorithm successfully dealts with discontinuities caused by geometric differences in two images.

  • PDF

Automatic Extraction Method of Control Point Based on Geospatial Web Service (지리공간 웹 서비스 기반의 기준점 자동추출 기법 연구)

  • Lee, Young Rim
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.2
    • /
    • pp.17-24
    • /
    • 2014
  • This paper proposes an automatic extraction method of control point based on Geospatial Web Service. The proposed method consists of 3 steps. 1) The first step is to acquires reference data using the Geospatial Web Service. 2) The second step is to finds candidate control points in reference data and the target image by SURF algorithm. 3) By using RANSAC algorithm, the final step is to filters the correct matching points of candidate control points as final control points. By using the Geospatial Web Service, the proposed method increases operation convenience, and has the more extensible because of following the OGC Standard. The proposed method has been tested for SPOT-1, SPOT-5, IKONOS satellite images and has been used military standard data as reference data. The proposed method yielded a uniform accuracy under RMSE 5 pixel. The experimental results proved the capabilities of continuous improvement in accuracy depending on the resolution of target image, and showed the full potential of the proposed method for military purpose.

Watershed Segmentation of High-Resolution Remotely Sensed Imagery

  • WANG Ziyu;ZHAO Shuhe;CHEN Xiuwan
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.107-109
    • /
    • 2004
  • High-resolution remotely sensed data such as SPOT-5 imagery are employed to study the effectiveness of the watershed segmentation algorithm. Existing problems in this approach are identified and appropriate solutions are proposed. As a case study, the panchromatic SPOT-5 image of part of Beijing urban areas has been segmented by using the MATLAB software. In segmentation, the structuring element has been firstly created, then the gaps between objects have been exaggerated and the objects of interest are converted. After that, the intensity valleys have been detected and the watershed segmentation have been conducted. Through this process, the objects in an image are divided into separate objects. Finally, the effectiveness of the watershed segmentation approach for high-resolution imagery has been summarized. The approach to solve the problems such as over-segmentation has been proposed.

  • PDF

Research for DEM and ortho-image generated from high resolution satellite images. (고해상도 영상 자료로부터 추출한 DEM 및 정사영상 생성에 관한 연구)

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Kim, Tae-Jung;Park, Wan-Yong
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.80-85
    • /
    • 2008
  • 최근 도심지역이 급변하고 고해상도 위성영상의 보급이 증가함에 따라 고해상도 위성영상을 이용한 수치표고모델과 정사영상 생성에 관한 연구가 활발해 지고 있다. 본 연구에서는 IKONOS, SPOT5, QUICKBIRD, KOMPSAT2 위성영상을 이용하여 DEM 과 정사영상을 생성하였으며 USGS DTED 와 기준점을 이용하여 결과의 정확도를 비교 분석하였다. 보다 정확한 DEM 생성을 위해 자동 피라미드 알고리즘을 적용하고 영상 정합시 에피폴라 기하학을 적용하였다. 정사 영상 생성시 DTED 높이값을 이용하여 보정을 수행하였으며 생성 속도를 높이기 위하여 리샘플링 그리드를 적용하였다. 본 연구에서 DEM 과 정사영상 생성시 QUICKBIRD 와 SPOT5 의 경우 영상의 용량이 매우 커 메모리 부족문제와 알고리즘 수행 속도 저하가 발생함을 확인하였다. 이를 개선하기 위하여 DEM 생성시 정합 후보점의 개수를 줄이는 알고리즘을 고안하여 기존에 메모리 문제로 생성하지 못했던 QUICKBIRD와 SPOT5 의 DEM 을 생성하였으며 정사 영상 생성시 리샘플링 그리드를 적용하여 고해상도 정상영상 생성 속도 개선에 상당한 효과를 가져왔다. 그러나 고해상도 위성 영상의 용량이 점점 커져감에 따라 이러한 메모리 문제와 처리 속도 저하에 관한 문제는 추후 계속적으로 연구되어야 할 부분이라고 할 수 있다. 본 연구에서 생성한 IKONOS, SPOT5, QUICKBIRD DEM 의 정확도를 USGS DTED 와 비교한 결과 13${\sim}$15 m 정도의 RMS 높이 오차가 산출되었으며 생성된 IKONOS, QUICKBIRD, KOMPSAT2 정사영상을 기준점과 비교한 결과 3 m 정도의 거리오차가 산출되었음을 확인하였다.

  • PDF

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery for Inaccessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.33-44
    • /
    • 2001
  • The paper presents several satellite models and satellite image decomposition methods for inaccessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in $1^{st}$, $2^{nd}$ and $3^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\Phi$(phi) correlated highly with positional parameters could be assigned to constant values. For inaccessible area, satellite images were decomposed, which means that two consecutive images were combined as one image, The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1st order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

Validation and selection of GCPs obtained from ERS SAR and the SRTM DEM: Application to SPOT DEM Construction

  • Jung, Hyung-Sup;Hong, Sang-Hoon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.483-496
    • /
    • 2008
  • Qualified ground control points (GCPs) are required to construct a digital elevation model (DEM) from a pushbroom stereo pair. An inverse geolocation algorithm for extracting GCPs from ERS SAR data and the SRTM DEM was recently developed. However, not all GCPs established by this method are accurate enough for direct application to the geometric correction of pushbroom images such as SPOT, IRS, etc, and thus a method for selecting and removing inaccurate points from the sets of GCPs is needed. In this study, we propose a method for evaluating GCP accuracy and winnowing sets of GCPs through orientation modeling of pushbroom image and validate performance of this method using SPOT stereo pair of Daejon City. It has been found that the statistical distribution of GCP positional errors is approximately Gaussian without bias, and that the residual errors estimated by orientation modeling have a linear relationship with the positional errors. Inaccurate GCPs have large positional errors and can be iteratively eliminated by thresholding the residual errors. Forty-one GCPs were initially extracted for the test, with mean the positional error values of 25.6m, 2.5m and -6.1m in the X-, Y- and Z-directions, respectively, and standard deviations of 62.4m, 37.6m and 15.0m. Twenty-one GCPs were eliminated by the proposed method, resulting in the standard deviations of the positional errors of the 20 final GCPs being reduced to 13.9m, 8.5m and 7.5m in the X-, Y- and Z-directions, respectively. Orientation modeling of the SPOT stereo pair was performed using the 20 GCPs, and the model was checked against 15 map-based points. The root mean square errors (RMSEs) of the model were 10.4m, 7.1m and 12.1m in X-, Y- and Z-directions, respectively. A SPOT DEM with a 20m ground resolution was successfully constructed using a automatic matching procedure.

A Study on the EO-1 Hyperion's Optimized Band Selection Method for Land Cover/Land Use Map (토지피복지도 제작을 위한 초분광 영상 EO-1 Hyperion의 최적밴드 선택기법 연구)

  • Jang Se-Jin;Lee Ho-Nam;Kim Jin-Kwang;Chae Ok-Sam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.289-297
    • /
    • 2006
  • The Land Cover/Land Use Map have been constructed from 1998, which has hierarchical structure according to land cover/land use system. Level 1 classification Map have done using Landsat satellite image over whole Korean peninsula. Level II classification Map have been digitized using IRS-1C, 1D, KOMPSAT and SPOT5 satellite images resolution-merged with low resolution color images. Level II Land Cover/Land Use Map construction by digitizing method, however, is consuming enormous expense for satellite image acquisition, image process and Land Cover/Land Use Map construction. In this paper, the possibility of constructing Level II Land Cover/Land Use Map using hyperspectral satellite image of EO-1 Hyperion, which is studied a lot recently, is studied. The comparison of classifications using Hyperion satellite image offering more spectral information and Landsat-7 ETM+ image is performed to evaluate the availability of Hyperion satellite image. Also, the algorithm of the optimal band selection is presented for effective application of hyperspectral satellite image.

Automated Training from Landsat Image for Classification of SPOT-5 and QuickBird Images

  • Kim, Yong-Min;Kim, Yong-Il;Park, Wan-Yong;Eo, Yang-Dam
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.317-324
    • /
    • 2010
  • In recent years, many automatic classification approaches have been employed. An automatic classification method can be effective, time-saving and can produce objective results due to the exclusion of operator intervention. This paper proposes a classification method based on automated training for high resolution multispectral images using ancillary data. Generally, it is problematic to automatically classify high resolution images using ancillary data, because of the scale difference between the high resolution image and the ancillary data. In order to overcome this problem, the proposed method utilizes the classification results of a Landsat image as a medium for automatic classification. For the classification of a Landsat image, a maximum likelihood classification is applied to the image, and the attributes of ancillary data are entered as the training data. In the case of a high resolution image, a K-means clustering algorithm, an unsupervised classification, was conducted and the result was compared to the classification results of the Landsat image. Subsequently, the training data of the high resolution image was automatically extracted using regular rules based on a RELATIONAL matrix that shows the relation between the two results. Finally, a high resolution image was classified and updated using the extracted training data. The proposed method was applied to QuickBird and SPOT-5 images of non-accessible areas. The result showed good performance in accuracy assessments. Therefore, we expect that the method can be effectively used to automatically construct thematic maps for non-accessible areas and update areas that do not have any attributes in geographic information system.

Image quality assessments of focal spot size on radiographic images in dogs

  • Park, Sujin;Hwang, Tae Sung;Lee, Hee Chun
    • Korean Journal of Veterinary Research
    • /
    • v.62 no.1
    • /
    • pp.8.1-8.6
    • /
    • 2022
  • The aim of this prospective study was to investigate the effects of focal spot size of X-ray tube on sharpness of clinical radiographic images of dogs and cats. Radiographic images of 24 stifle joints, 15 carpi, 18 lumbar spines, 61 thoraxes, and 47 abdomens of 102 dogs and 4 cats were obtained in the present study, using 2 X-ray tubes with nominal focal spots of 2.0 mm and 0.6 mm, respectively. The sharpness of specific anatomical structures in all the images of 5 projections was assessed. The radiographic sharpness of various anatomical structures of lumbar spine and cortex of stifle with fine focal spot was increased significantly compared with broad focal spot images. In addition, the blurred motion was significantly higher in the fine focal spot images of thorax. In conclusion, our study suggests that a selective use of fine foci for imaging of lumbar spine or cortex of stifle enhanced radiographic sharpness.