• Title/Summary/Keyword: SPME-GC-MS

Search Result 162, Processing Time 0.019 seconds

Volatile Flavor Compounds from Pear Juice (Pyrus pyrifolia cv. Niitaka) (배주스의 휘발성 향기성분)

  • Kim, Mi Young;Seo, Won Ho;Huang, Ying
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.6
    • /
    • pp.890-896
    • /
    • 2018
  • The aim of this study was to determine volatile flavor compounds in Shingo pear juice. Volatile flavor compounds were analyzed using solid-phase micro-extraction (SPME) - gas chromatography-mass spectrometry (GC-MS). The effect of inorganic salts solution on the extraction ability of the SPME fiber was treated by adding saturated $CaCl_2$ solution at the ratio of 1:20 (v/v) after 0, 60, 120 min of preparing pear juice, respectively. As a result, a total of 22 volatile compounds were identified in Shingo pear juice. Ethyl acetate was found to be the most abundant volatile compound ($13.36{\sim}19.61{\mu}g/kg$), followed in order by hexanal, ethyl hexanoate, ethyl 3-(methylthio)-2-propenoate, ethyl octanoate and 2-hexenal. Total contents of volatile flavor compounds were $31.07{\mu}g/kg$ (control), $40.93{\mu}g/kg$ (0 min), $27.62{\mu}g/kg$ (60 min) and $26.32{\mu}g/kg$ (120 min). This result indicated that the addition of saline solutions could inhibit the enzymatic reaction of volatile flavor compounds effectively when treated as soon as juice preparation.

Analysis of Characteristics and Aroma Pattern of Powdered Chungkookjang from Hot-Air and Freeze Drying (열풍 및 동결 건조 분말 청국장의 특성 및 향기 패턴 분석)

  • Lee, Hyo-Suk;Nam, Ha-Young;Lee, Ki-Teak
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.6
    • /
    • pp.724-730
    • /
    • 2006
  • Two types of powdered chungkookjang, were prepared by a hot air-drying process, and the freeze-drying, and composition and aroma patterns were examined. The fresh chungkookjang was composed of 53.8% moisture, while the hot air-dried and freeze-dried powdered chungkookjang contained 5.2% moisture, $39.3{\sim}39.4%$ crude protein, $18.6{\sim}18.7%$ crude lipid, $4.7{\sim}5.0%$ crude ash, and $31.7{\sim}32.2%$ carbohydrate. The pH of the each powered chungkookjang was similar, ranging from 6.5 to 6.7. The freeze-dried powdered chungkookjang showed the highest lightness (67.30), yellowness (59.37) while the highest redness (43.1) was observed in the hot air-dried chungkookjang. Each chungkookjang was analysed by an electronic nose with metal oxide 12 sensors and SPME-GC/MS. The response by the electronic nose was analysed by principal component analysis (PCA). The proportion of the first principal component was 90.47%, suggesting that each aroma pattern of the prepared chungkookjang was discriminated. SPME-GC/MS was used to identify the pyrazines. The percentage of pyrazines observed in the fresh chungkookjang, freeze-dried powdered chungkookjang, and hot air-dried powdered chungkookjang was 6.6, 3.8 and 15.9%, respectively. A higher overall preference was obtained from the hot air-dried powdered chungkookjang than with the freeze-dried powdered chungkookjang.

  • PDF

Composition and Cytotoxicity of Essential Oil from Korean rhododendron (Rhododendon mucronulatum Turcz. var. ciliatum Nakai) (털진달래(Rhododendon mucronulatum Turcz. var. ciliatum Nakai) 정유의 성분분석과 독성평가)

  • Park, Yu-Hwa;Kim, Song-Mun
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.233-237
    • /
    • 2008
  • The essential oil was obtained from the aerial part of Rhododendon mucronulatum Turcz. var. ciliatum Nakai by steam distillation, samples were collected by headspace (HS) and solid-phase microextraction (SPME) methods, and the compositions of the oil were analyzed by gas chromatography-mass spectrometry (GC-MS). Nineteen constituents were identified from the essential oil: 15 carbohydrates, 3 alcohols, and 1 acetates. Major constituents were 2-${\beta}$-pinene (16.1%), camphene (11.9%), ${\delta}$-3-carene (11.4%), d,l-limonene (9.5%), and ${\gamma}$-terpinene (9.5%). By SPME extraction, seventeen constituents were identified: 13 hydrocarbons, 1 alcohol, 1 nitrogen-containing compound, 1 acetate, and 1 amine. Major constituents of the SPME-extracted sample were cam phene (19.6%), 2-${\beta}$-pinene (18.0%), ${\delta}$-3-carene (17.4%), trimethyl hydrazine (9.7%), ${\gamma}$-terpinene (8.5%), and d,l-limonene (5.5%). By HS extraction, thirteen constituents were identified: 11 hydrocarbons, 1 alcohol, and 1 nitrogen-containing compound. Major constituents of the HS-extracted sample were camphene (25.8%), ${\delta}$-3-carene (24.8%), 2-${\beta}$-pinene (20.2%), d,l-limonene (5.4%), tricyclene (5.1%) and trimethyl hydrazine (4.6%). The fragrance of the essential oil was coniferous, balsamic, and woody, and the $IC_{50}$ value of the essential oil was 0.030 ${\mu}g/mg$ in MTT assay using UaCaT keratinocyte cell line.

Physiochemical Properties of Functional Oils Produced Using Red Yeast-Rice Ethanol Extracts and Diacylglycerol Oil (홍국쌀 에탄올 추출물과 Diacylglycerol Oil을 이용하여 제조한 기능성 유지의 이화학적 특성 연구)

  • Kim, Nam-Sook;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.2
    • /
    • pp.201-208
    • /
    • 2007
  • Functional oils (FOs) were produced from commercial diacylglycerol oil and red yeast rice extracts from 80% ethanol for 1 hr in a shaking water bath at $35^{\circ}C$ and 175 rpm. FOs contained (A) 600, (B) 1200, (C) 1800, and (D) 2280 ppm of red yeast-rice extracts, respectively. The Hunter a value and b value were risen whereas L value was reduced along with the increase of extract concentration. Content of monacolin K and total phenolic compounds in FOs significantly increased according to the increase of extract concentration. The oxidation stability of FOs was observed by Rancimat at $98^{\circ}C$. Induction time decreased according to the increase of extract concentration. The major volatile compounds of FOs were compared using the electronic nose (EN) system and solid phase microextraction (SPME) method combined with gas chromatograph/mass spectrometry (GC/MS). EN was composed of 12 different metal oxide sensors. Sensitivities (Rgas/Rair) of sensors from EN were analyzed by principal component analysis (PCA), whose proportion was 99.66%. For qualitative or quantitative analysis of volatile compounds by SPME-GC/MS, the divinylbenzene/carboxene/polydimethyl-siloxane fiber and sampling temperature of $50^{\circ}C$ were applied.

Volatile Component of Pine Needles from Pinus densiflora S. using Solid Phase Microextraction-Ges Chromatography-Mass Spectrometry

  • Lee Jae-Gon;Lee Chang-Gook;Back Shin;Jang Hee-Jin;Kwag Jae-Jin;Lee Gae-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.4
    • /
    • pp.373-379
    • /
    • 2005
  • The volatile components of Pinus densiflora needles were studied by gas chromatography-mass spectrometry(GC-MS), using seven kinds of solid phase microextraction (SPME) fibers, seven in SPME fibers: 100 ${\mu}m$ PDMS, 65 ${\mu}m$ PDMS/DVB, 65 ${\mu}m$ SF-PDMS/DVB, 85 ${\mu}m$ PA, 75 ${\mu}m$ CAR/PDMS, 65 ${\mu}m$ CW/DVB and 50/30 ${\mu}m$ DVB/CAR/PDMS fibers. A total of 40 components were identified by using the seven different SPME fibers. The identified components were classified, according to their functionalities, as follows: 26 hydro-carbons, 7 alcohols, 4 carbonyl compounds, and 3 esters. The major volatile components of Pinus densiflora needles identified by these SPME fibers were $\alpha$-pinene ($1.7\~21.7\;{\mu}g/g$), $\beta$-myrcene ($2.0\~20.1\;{\mu}g/g$), $\beta$-phel-landrene ($4.6\~22.8\;{\mu}g/g$), $\beta$-caryophyllene ($6.7\~26.0\;{\mu}g/g$) germacrene D ($1.1\~11.9\;{\mu}g/g$). In the comparison of the seven SPME fibers, PDMS appeared to be the most suitable fiber for the analysis of hydrocarbon compounds and CAR/DPMS, PDMS/DVB, CW/VB and DVB/CAR/PDMS are shown to be optimal for analysis of the alcohols and carbonyl compounds.

Thermal Changes of Aroma Components in Soybean Pastes (Doenjang) (된장 가열조리 시 생성되는 향기성분 변화)

  • Lee, Seung-Joo;Ahn, Bo-Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.271-276
    • /
    • 2008
  • In this study, volatile compounds were isolated from traditional and commercial fermented soybean pastes according to different heating temperatures (room temperature, $50^{\circ}C$, $100^{\circ}C$) using headspace-solid phase microextraction (HS-SPME). The compounds were then analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 51 volatile components, including 18 esters, 3 alcohols, 6 acids, 8 pyrazines, 5 volatile phenols, 6 aldehydes, and 5 miscellaneous compounds, were identified. Esters and acids such as ethyl hexadecanoate, acetic acid, and 2/3-methyl butanoic acid were the largest groups among the quantified volatiles. By applying principal component analyses to the GCMS data sets, differences were observed in the volatile components of the soybean pastes as to the different heating temperatures. A large variation was shown between the volatile components of the traditional and commercial soybean pastes by increasing the heating temperature. Commercial samples had significantly higher levels of longer chain ethyl esters, aldehydes, and thermal degradation products such as maltol and 2-acetyl pyrrole, while traditional samples showed higher concentrations of acids and pyrazines.

Separation and recovery of semi-volatile substances of Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus by reduced pressure collections and GC-MS

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.11-22
    • /
    • 2020
  • When extracting semi-volatile components of herbal medicines using hot water vapor, some substances may react with water vapor or oxygen, and some volatile substances may be lost, when using an organic solvent extraction method has the disadvantage that it may contain a non-volatile material and residual organic solvent. In addition, it is inefficient to separate semi-volatile substances from herbal medicines into each single component and conduct biological activity research for each component to determine the effective ingredient, and some components may be lost in the separation process. In this study, semi-volatile substances evaporated under two pressure-reduced conditions in Chinese herbal medicines such as Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus were separated by cooling with liquid nitrogen. Those were analyzed by gas chromatography-mass spectrometry (GC-MS) to identify the components, and this method may be used to study biological activities at the cellular level. The substances separated under reduced pressure, essential oil obtained by simultaneous distillation extraction (SDE) method and substances by using solid phase micro-extraction (SPME) from Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus were analyzed by GC-MS. In the case of Cnidii Rhizoma and Aucklandiae Radix, there were some differences among the essential oil components obtained by SDE and those identified by low temperature capture (CT) and SPME method, these were believed to be produced by some volatiles reacting with water or oxygen at the boiling point temperature of water.

Volatile Flavor Compounds in Commercial Milk by Static Headspace, Purge and Trap, Solid-Phase Microextraction (Static headspace, purge & trap 및 solid-phase microextraction을 이용한 시판우유의 휘발성 향기성분 분석)

  • Lee, Hong-Min;Lee, Ki-Woong;Chang, Chi-Hoon;Kim, Sung-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.738-741
    • /
    • 2006
  • Volatile flavor compounds in commercial sterilized milk were analyzed and identified by static headspace, purge-and-trap, and solid-phase microextraction (SPME) methods. About 20 volatile compounds were identified by GC/MS, and aldehydes and ketones were the most distinctive and abundant compounds. Static headspace analysis allowed the identification of only the most abundant compounds, such as acetone. Five ketones (acetone, 2-butanone, 2-pentanone, 2-heptanone, 2-nonanone), four aldehydes (2-methylbutanal, pentanal, hexanal, benzaldehyde) and dimethyl sulfide, all of which were responsible for off-flavor in milk, were found by the purge-and-trap and SPME methods. The two methods differed little in their release of these compounds, but they yielded different amounts in the extraction.

Essential Oil Analysis of Illicium anistum L. Extracts

  • Min, Hee-Jeong;Kim, Chan-Soo;Hyun, Hwa-Ja;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.682-688
    • /
    • 2017
  • Fresh japanese anise (Illicium anisatum L.) tree leaves were collected and ground after drying. The essential oils of the leaves were analyzed by gas chromatography-mass spectrometry (GC-MS) using headspace (HS) and solid phase-microextra (SPME) methods. Volatile components of the leaves were identified 21 and 65 components in HS and SPME, respectively. The main components of the essential oils obtained by HS method were eucalyptol (36.7%), (+)-sabinene (15.61%), ${\delta}$-3-carene (6.87%), ${\alpha}$-pinene (6.07%), ${\gamma}$-terpinen (5.72%), ${\alpha}$-limonene (5.26%), ${\beta}$-myrcene (4.13%), ${\alpha}$-terpinene (4.04%) and ${\beta}$-pinene (3.73%). The other components were less than 3.5%. SPME method also showed that eucalyptol (17.88%) was main. The other were 5-allyl-1-methoxy-2 (13.29%), caryophyllene (6.09%), (+)-sabinene (5.60%), ${\alpha}$-ocimene (4.89%) and ${\beta}$-myrcene (3.73%), and the rest were less amounts than 3.5%. This work indicated that many more volatile components were isolated, comparing to the previous literature data and that SPME method was much more effective than HS method in the analysis of the volatile components.

Determination of the presence of benzene in vitamin drinks using headspace - solid phase microextraction and gas chromatography - mass spectrometry (Headspace Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry를 이용한 비타민드링크 제품 중 Benzene의 미량분석)

  • Kim, Jong-Hun;Lee, Kyung-Min
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.237-245
    • /
    • 2007
  • The presence of benzene in 31 products of vitamin drinks purchased from 20 retail outlets was determined using headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The sample (25 ml) was stirred at 1200 rpm for 4 min using a magnetic bar with a $100{\mu}m$ SPME fiber as an adsorbent for benzene which was then desorbed from the fiber for 1 min in the GC injector. Quantitation was achieved using the standard addition method. The limit of detection was determined as 0.56 ng/ml and over a concentration range 0-40 ng/ml the coefficient of correlation was greater than 0.999. The concentration of benzene in the drinks examined was in the range not detectable to 47.35 ng/ml. Benzene was detected in 15 of the drinks with concentration in 5 of them greater than 10 ng/ml which is the limit set for the presence of benzene in the Drinking Water Regulations. The concentrations of benzene in the 5 drinks which exceeded the limit of 10 ng/ml were 16.99, 35.14, 16.03, 47.35 and 14.28 ng/ml respectively.