• Title/Summary/Keyword: SPL(sound pressure level)

Search Result 127, Processing Time 0.026 seconds

An Experimental Study on Noise Characteristics of Propeller Cavitation Inception (프로펠러 캐비테이션의 초기발생과 소음특성에 대한 실험연구)

  • Lee, Phil-Ho;Ahn, Byoung-Kwon;Lee, Chang-Sup;Lee, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Cavitation is the formation of vapour bubbles of a flowing liquid in a region where the pressure of the liquid falls below its vapor pressure. Various types of cavitations are generated on the propeller blades. As cavity bubbles passing the blade are forced to oscillate in size or shape and come to collapse, they cause very strong local acoustic waves in the fluid and radiate noise. Comparing the Sound Pressure Level(SPL) before and after cavitation, SPL increases 2dB per 1 knot increase in ship speed above the cavitation inception speed(CIS). Consequently, the CIS is an important criteria to design silent propellers. In this work, experimental measurements of radiated noise according to various types of cavitations from the model propeller are carried out in a large cavitation tunnel and their acoustical characteristics are extensively investigated.

Prediction of the Noise Levels for a Newly-founded Petrochemical Plant (신설 석유화학 공장의 소음도 예측)

  • 윤세철;이해경
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.135-142
    • /
    • 1996
  • Prolonged in-plant personnel exposure to high noise levels results in permant hearing damage. There are no way to correct this hearing damage by treatment or use of hearing aids. Therefore, every employer is responsible for providing a workplace free of such hazards as excessive noise. This study was carried out to evalute and predict a given noise environment based on specific limit as the noise guarantee for a newly-founded petrochemical plant. The maximum total sound level should not exceed 85dBA in the work area, except where the area is defined as a restricted area and 70dBA at the plant boundary. Prediction of the noise levels within the plant area for a newly-founded petrochemical plant was achieved by dividing all plant area into 20m$\times$20m regular grid spaces and noise level inside the area or unit that in-plant personel exposure to high noise levels was estimated computed into 5m$\times$5m regular grid spaces. The noise level at the grid point that was propagated from each of the noise sources(equipments) computed using the methematical formula was defined as follows : $SPL_2$=$SPL_1-20log{\frac{r_2}{r_1}}$(dB) where $SPL_1$ =sound pressure level at distance $r_1$ from the source $SPL_2$=sound pressure level at distance $r_2$ from the source As a result, the equipments exceeded noise limit or irritaring noise levels were identified on the specific grid coordinates. As for equipments in the area that show high noise levels, appropriate counter-measures for noise control (by barriers, enclosure, silencers, or the change of equipments, for example) should be reviewed. Methods for identifying sources of noise applied in this study should be the model for prediction of the noise levels for any newly-founded plant.

  • PDF

The Effect of Adaptation to Sound Intensity on the Neural Metabolism in Auditory Pathway: Small Animal PET Study (소동물 [F-18]FDG 양전자단층촬영 기법을 이용한 청각신경에서의 소리크기에 대한 적응효과 연구)

  • Jang, Dong-Pyo
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • Although sound intensity is considered as one of important factors in auditory processing, its neural mechanism in auditory neurons with limited dynamic range of firing rates is still unclear. In this study, we examined the effect of sound intensity adaptation on the change of glucose metabolism in a rat brain using [F-18] micro positron emission tomography (PET) neuroimaging technique. In the experiment, broadband white noise sound was given for 30 minutes after the [F-18]FDG injection in order to explore the functional adaptation of rat brain into the sound intensity levels. Nine rats were scanned with four different sound intensity levels: 40 dB, 60 dB, 80 dB, 100 dB sound pressure level (SPL) for four weeks. When glucose uptake during the adaptation of a high intensity sound level (100 dB SPL) was compared with that during adaptation to a low intensity level (40 dB SPL) in the experiment, the former induced a greater uptake at bilateral cochlear nucleus, superior olivary complexes and inferior colliculi in the auditory pathway. Expectedly, the metabolic activity in those areas linearly increased as the sound intensity level increased. In contrast, significant decrease interestingly occurred in the bilateral auditory cortices: The activities of auditory cortex proportionally decreased with higher sound intensities. It may reflect that the auditory cortex actively down-regulates neural activities when the sound gets louder.

Characteristics of Piezoelectric Microspeakers according to the Material Properties (물성변화에 따른 압전형 마이크로스피커의 특성)

  • Jeong, Kyong-Shik;Park, Jong-Sun;Cho, Hee-Chan;Yi, Seung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.37-38
    • /
    • 2007
  • This paper reports the characteristics of piezoelectric microspeakers that are audible in open air with high quality piezoelectric AlN thin film according to the materials properties. When we use a tensile-stressed silicon nitride diaphragm as a supporting layer, the Sound Pressure Level (SPL) is relatively small. However, the SPL of the fabricated microspeakers that have compressive-stressed composite diaphragm show higher output pressure than those of tensile-stressed diaphragm. It produces more than 60dB from 100Hz to 15kHz and the highest SPL is about 100dB at 9.3kHz with 20 Vpeak-to-peak sinusoidal input biases and at 10 mm distances from the fabricated microspeakers to the reference microphone.

  • PDF

Vibro-acoustic Analysis for Predicting the Noise of HDD (하드디스크 드라이브 소음 예측을 위한 진동 음향 연계 해석)

  • 이상희;고상철;김준태;강성우;한윤식;황태연
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.103-108
    • /
    • 2001
  • The structure of hard disk drive(HDD) is excited by dynamic motion of a disk-spindle motor, and it makes sound noise. Therefore, the cover and the base of HDD should be designed to reduce noise and vibration induced by spindle motor. The prediction technique of sound pressure level(SPL) of a given structural shape enables us to design a cover and a base with much less vibration and noise. In this paper, we measured the force of disk-spindle motor and predicted SPL from HDD by computational simulation. To get a SPL of HDD by computational simulation, modal analysis and forced vibration analysis were performed with ANSYS, and sound radiation was computed using SYSNOISE. The calculated results were compared with experimental results and a good agreement was obtained. With this computer simulation procedure and design of experiment(DOE), optimal thickness of noise barrier and damper was calculated.

  • PDF

Effects of macroporosity and double porosity on noise control of acoustic cavity

  • Sujatha, C.;Kore, Shantanu S.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.351-366
    • /
    • 2016
  • Macroperforations improve the sound absorption performance of porous materials in acoustic cavities and in waveguides. In an acoustic cavity, enhanced noise reduction is achieved using porous materials having macroperforations. Double porosity materials are obtained by filling these macroperforations with different poroelastic materials having distinct physical properties. The locations of macroperforations in porous layers can be chosen based on cavity mode shapes. In this paper, the effect of variation of macroporosity and double porosity in porous materials on noise reduction in an acoustic cavity is presented. This analysis is done keeping each perforation size constant. Macroporosity of a porous material is the fraction of area covered by macro holes over the entire porous layer. The number of macroperforations decides macroporosity value. The system under investigation is an acoustic cavity having a layer of poroelastic material rigidly attached on one side and excited by an internal point source. The overall sound pressure level (SPL) inside the cavity coupled with porous layer is calculated using mixed displacement-pressure finite element formulation based on Biot-Allard theory. A 32 node, cubic polynomial brick element is used for discretization of both the cavity and the porous layer. The overall SPL in the cavity lined with porous layer is calculated for various macroporosities ranging from 0.05 to 0.4. The results show that variation in macroporosity of the porous layer affects the overall SPL inside the cavity. This variation in macroporosity is based on the cavity mode shapes. The optimum range of macroporosities in poroelastic layer is determined from this analysis. Next, SPL is calculated considering periodic and nodal line based optimum macroporosity. The corresponding results show that locations of macroperforations based on mode shapes of the acoustic cavity yield better noise reduction compared to those based on nodal lines or periodic macroperforations in poroelastic material layer. Finally, the effectiveness of double porosity materials in terms of overall sound pressure level, compared to equivolume double layer poroelastic materials is investigated; for this the double porosity material is obtained by filling the macroperforations based on mode shapes of the acoustic cavity.

Floor impact sound classification and setting Acceptable limit based on psychoacoustical evaluation (감성평가 기반 바닥충격음 등급화 및 수인한도 설정)

  • Kim, Sung Min;Hong, Joo Young;Jeon, Jin Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.7-9
    • /
    • 2014
  • An auditory experiment was conducted to establish annoyance criteria for floor impact noise in apartment buildings. Heavyweight floor impact sounds were recorded using an impact ball; the impact sound pressure level (SPL) together with the temporal decay rate (DR), which is quantified by the dB drop per second, was analyzed. For the experiment, A-weighted exposure levels of the heavy-weight floor impact sounds ranging 34~73 dB were evaluated at 3 dB intervals. Participants used a 7-point verbal scale to evaluate the level of annoyance from floor impact noise. The results show that the annoyance increases with increasing impact SPL and decreasing DR. Consequently, a classification and an acceptable level of floor impact sounds were proposed.

  • PDF

Analysis of Sound Quality Parameters of Sound Sources applied for Soundscape Design (사운드 스케이프 적용 음원의 음질 지수 분석)

  • Park, Hyeon-Ku;Song, Min-Jeong;Jang, Gil-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.814-819
    • /
    • 2004
  • When we evaluate sound, there are various methods for noise such as A-weighted SPL(sound pressure level), NC(noise criteria), NR(noise rating) and SIL(speech interference level) etc. however, it is not sufficient for the sounds supplied to public places used in soundscape design. Consequently it is needed to develop the tool for evaluating the good acoustical environment and futhermore quantifying the effect of improvement by supplying sound sources. In this study, it was tried to analyse the sound sources applied for soundscape design using sound quality parameters. The sound sources used were natural sound artificial sound. For the sound quality parameters, Loudness(L), Sharpness(S), Fluctuation strength(FL), Tonality(T), Roughness(R), Unbiased Annoyance(UA) were used and sound quality values were compared both natural and artificial sounds, depending on the convolution of sound sources with background noise, the duration, the frequency contents and the SPL. As a result, the values of L and UA have shown to be changed comparing to the other parameters, and it is necessary to analyse the correlation with subjects' responses.

  • PDF

Design of Acoustic Resonator Array for Low Frequency Mode Control of Launch Vehicle (위성 발사체 탑재부 저주파 음향 모드 제어를 위한 공명기 배치 설계)

  • Seo, Sang-Hyun;Park, Soon-Hong;Jang, Young-Soon;Yi, Yeong-Moo;Cho, Gwang-Rae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.521-524
    • /
    • 2005
  • To protect a satellite and electronic equipment from the acoustic loads generated by rocket propulsion system, many launch vehicle use acoustic blanket. Most high frequency region of the acoustic loads is reduced by nose fairing skins and acoustic barrier, but low frequency region is not. In order to control low frequency acoustic mode, we designed away resonator panel which was made of composite materials. This paper shows the absorption coefficient measurement result of resonator and SPL(Sound Pressure Level) reduction by using resonators in a rectangular cavity for experiment. Proper arrangement of acoustic resonators at each mode reduce effectively SPL around the satellite through changing boundary condition.

  • PDF

Piezoelectric Microspeakers Fabricated with High Quality AlN Thin Film (고품질 AlN 박막으로 제작한 압전 마이크로스피커)

  • Yi, Seung-Hwan;Jung, Kyung-Sick;Kim, Dong-Kee;Shin, Gwang-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1455-1460
    • /
    • 2007
  • This paper reports the piezoelectric microspeakers that are audible in open air with high quality piezoelectric AlN thin film deposited onto Mo/Ti electrode. This successful achievement, compared to the previous results, is followed by manipulating two material properties: the one is to use a compressively stressed silicon nitride film as a supporting diaphragm (even tensile stressed, around +20 MPa) and the another is to use high quality AlN thin film with compressive residual stress (less than -100 MPa). With these materials, the Sound Pressure Level (SPL) of the fabricated micro speakers shows more than 60 dB from 100 Hz to 15 kHz and the highest SPL is about 100 dB at 9.3 kHz with 20 Vpeak-to-peak sinusoidal input and with 10 mm distances from the fabricated micro speakers to the reference microphone (B&K Type 2669 & 4192L).