• Title/Summary/Keyword: SPI index

Search Result 260, Processing Time 0.027 seconds

Development of a Modified Standardized Precipitation Index by Considering Effects of the Dry Period and Rainfall (무강수일수와 강우효과를 고려한 개선된 표준강수지수 개발)

  • Lee, Jun-Won;Kim, Gwang-Seob
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.409-418
    • /
    • 2012
  • A modified standardized precipitation index was developed by considering the length of dry period and surface run-off effect. The official reports and newspapers on drought from 1973 to 2009 were quantified to evaluate drought indices. The developed index was evaluated using the receiver operating characteristic analysis. In order to suggest improved drought index, we cut the precipitation amount that may do not contribute the mitigation of drought and weight dry period by considering cumulative distribution, decile distribution of dry periods. Drought detection capability of the suggested index has improved by weighting of dry period effects and considering precipitation amounts contributing drought mitigation.

Evaluation of the past and future droughts using Standardized Precipitation Index (SPI) and Effective Drought Index (EDI) in the western region of Chungnam Province (SPI와 EDI를 이용한 충남 서부지역 과거와 미래 가뭄 평가)

  • An, Hyowon;Ha, Kyoochul
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.14-27
    • /
    • 2020
  • The drought has occurred from the past, and has caused a lot of damage. It is important to analyze the past droughts and predict them in the future. In this study, the temperature and precipitation of the past and the future from climate change RCP 4.5 and 8.5 scenarios were analyzed for Seosan and Boryeong in the western region of Chungnam Province, which is considered as a drought-prone area on the Korean Peninsula. Comparing Standardized Precipitation Index (SPI) and Effective Drought Index (EDI) based on the past droughts, EDI was verified to be more suitable for the drought assessment. According to RCP 4.5, the frequency and intensity of droughts in the early future (2021~2060) were expected to increase and to be stronger. Particularly, severe droughts were predicted for a long time from 2022 to 2026, and from 2032 to 2039. Droughts were expected to decrease in the late future (2061~2100). From RCP 8.5, drought occurrences were predicted to increase, but the intensity of the droughts were expected to decrease in the future. As a result of evaluation of the frequencies of droughts by seasons, the region would be most affected by fall drought in the early future and by spring drought in the late future according to RCP 4.5. In the case of RCP 8.5, the seasonal effects were not clearly distinguished. These results suggest that droughts in the future do not have any tendency, but continue to occurr as in the past. Therefore, the measures and efforts to secure water resources and reinforcement of water supply facilities should be prepared to cope with droughts.

Analysis of 2012 Spring Drought Using Meteorological and Hydrological Drought Indices and Satellite-based Vegetation Indices (기상 및 수문학적 가뭄지수와 위성 식생지수를 활용한 2012년 봄 가뭄 분석)

  • Ahn, So-Ra;Lee, Jun-Woo;Kim, Seong-Joon
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.78-88
    • /
    • 2014
  • This study is to analyze the 2012 spring drought of Korea using drought index and satellite image. The severe spring drought recorded in May of 2012 showed 36.4% of normal rainfall(99.5mm). The areas of west part of Gyeonggi-do and Chungcheong-do were particularly serious. The drought indices both the SPI(Standardized Precipitation Index) and WADI(WAter supply Drought Index) represented the drought areas from the end of May and to the severe drought at the end of June. The drought by SPI completely ended at the middle of July, but the drought by WADI continued severe drought in the agricultural reservoir watersheds of whole country even to the end of the July. On the other hand, the results by spatial NDVI(Normalized Difference Vegetation Index) and EVI(Enhanced Vegetation Index) data from Terra MODIS, both indices showed relatively low values around the areas of Sinuiju, Pyongyang, and west coast of North Korea and Gyeonggi-do and Chungcheong-do of South Korea indicating drought condition. Especially, the values of NDVI and EVI at Chungcheong-do were critically low in June compared to the normal year value.

  • PDF

Analysis of Drought Characteristics in Gyeongbuk Based on the Duration of Standard Precipitation Index

  • Ahn, Seung Seop;Park, Ki bum;Yim, Dong Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.863-872
    • /
    • 2019
  • Using the Standard Precipitation Index (SPI), this study analyzed the drought characteristics of ten weather stations in Gyeongbuk, South Korea, that precipitation data over a period of 30 years. For the number of months that had a SPI of -1.0 or less, the drought occurrence index was calculated and a maximum shortage months, resilience and vulnerability in each weather station were analyzed. According to the analysis, in terms of vulnerability, the weather stations with acute short-term drought were Andong, Bonghwa, Moongyeong, and Gumi. The weather stations with acute medium-term drought were Daegu and Uljin. Finally the weather stations with acute long-term drought were Pohang, Youngdeok, and Youngju. In terms of severe drought frequency, the stations with relatively high frequency of mid-term droughts were Andong, Bonghwa, Daegu, Uiseong, Uljin, and Youngju. Gumi station had high frequency of short-term droughts. Pohang station had severe short-term ad long-term droughts. Youngdeok had severe droughts during all the terms. Based on the analysis results, it is inferred that the size of the drought should be evaluated depending on how serious vulnerability, resilience, and drought index are. Through proper evaluation of drought, it is possible to take systematic measures for the duration of the drought.

Evaluation of Semi-Distributed Hydrological Drought using SWSI (Surface Water Supply Index) (SWSI를 이용한 준분포형 수문학적 가뭄 평가)

  • Kwon Hyung-Joong;Kim Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.37-43
    • /
    • 2006
  • A hydrological drought index, MSWSI (Modified Surface Water Supply Index) was suggested based on SWSI (Surface Water Supply Index). With the available data of spatially distributed observation station of precipitation, dam storage, stream water level and natural groundwater level, South Korea was divided into 32 regions. This was conducted to represent the calculated index as a spatially distributed information. Monthly MSWSI was evaluated for the period of 1974 and 2001. It is necessary to compare this result with PDSI (Palmer Drought Severity Index) and SPI (Standard Precipitation Index), and check the applicability of the suggested index in our hydrological drought situation.

Drought analysis of Cheongmicheon watershed using meteorological, agricultural and hydrological drought indices (기상학적, 농업학적, 수문학적 가뭄지수를 이용한 청미천 유역의 가뭄 분석)

  • Won, Kwang Jai;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.509-518
    • /
    • 2016
  • This study assessed drought of Cheongmicheon watershed from 1985 to 2015 according to duration. In order to quantify drought, we used meteorological and hydrological drought index. Standardized Precipitation Index(SPI) based on precipitation and Standardized Precipitation Evapotranspiration Index(SPEI) based on precipitation and evapotranspiration were applied as meteorological drought index. Palmer Drought Severity Index(PDSI) and Stream Drought Index(SDI) based on simulation of Soil and Water Assessment Tool(SWAT) model were applied as agricultural and hydrological drought index. As a result, in case average of extreme and averaged drought, 2014 and 2015 have the most vulnerable in all drought indices. Variation of drought showed different trend with regard to analysis of frequency. Also, the extreme and averaged drought have high correlation between drought indices excluding between PDSIs. However, each drought index showed different occurrence year and severity of drought Therefore, drought indices with various characteristics were used to analysis drought.

Derivation of Drought Severity-Duration-Frequency Curves Using Drought Frequency Analysis (가뭄빈도해석을 통한 가뭄심도-지속시간-생기빈도 곡선의 유도)

  • Lee, Joo-Heon;Kim, Chang-Joo
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.11
    • /
    • pp.889-902
    • /
    • 2011
  • In this study, frequency analysis using drought index had implemented for the derivation of drought severity-duration-frequency (SDF) curves to enable quantitative evaluations of past historical droughts having been occurred in Korean Peninsular. Seoul, Daejeon, Daegu, Gwangju, and Busan weather stations were selected and precipitation data during 1974~2010 (37 years) was used for the calculation of Standardized Precipitation Index (SPI) and frequency analysis. Based on the results of goodness of fit test on the probability distribution, Generalized Extreme Value (GEV) was selected as most suitable probability distribution for the drought frequency analysis using SPI. This study can suggest return periods for historical major drought events by using newrly derived SDF curves for each stations. In case of 1994~1995 droughts which had focused on southern part of Korea. SDF curves of Gwangju weather station showed 50~100 years of return period and Busan station showed 100~200 years of return period. Besides, in case of 1988~1989 droughts, SDF of Seoul weather station were appeared as having return periods of 300 years.

Comparison of Meteorological Drought and Hydrological Drought Index (기상학적 가뭄지수와 수문학적 가뭄지수의 비교)

  • Lee, Bo-Ram;Sung, Jang Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.69-78
    • /
    • 2015
  • In this study, meteorological drought indices were examined to simulate hydrological drought. SPI (Standardized Precipitation Index) and SPEI (Standardized Precipitation Evapotranspiration Index) was applied to represent meteorological drought. Further, in order to evaluate the hydrological drought, monthly total inflow and SDI (Streamflow Drought Index) was computed. Finally, the correlation between meteorological and hydrological drought indices were analyzed. As a results, in monthly correlation comparison, the correlation between meteorological drought index and monthly total inflow was highest with 0.67 in duration of 270-day. In addition, a meteorological drought index were correlated 0.72 to 0.87 with SDI. In compared to the annual extremes, the relationship between meteorological drought index and minimum monthly inflow was hardly confirmed. But SDI and SPEI showed a slightly higher correlation. There are limitation that analyze extreme hydrological drought using meteorological drought index. For the evaluation of the hydrological drought, drought index which included inflow directly is required.

Satellite-based Evaporative Stress Index (ESI) as an Indicator of Agricultural Drought in North Korea (Evaporative Stress Index (ESI)를 활용한 북한의 위성영상기반 농업가뭄 평가)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Hong, Eun-Mi;Kim, Dae-Eui;Svoboda, Mark D.;Tadesse, Tsegaye;Wardlow, Brian D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • North Korea has frequently suffered from extreme agricultural crop droughts, which have led to food shortages, according to the Food and Agriculture Organization (FAO). The increasing frequency of extreme droughts, due to global warming and climate change, has increased the importance of enhancing the national capacity for drought management. Historically, a meteorological drought index based on data collected from weather stations has been widely used. But it has limitations in terms of the distribution of weather stations and the spatial pattern of drought impacts. Satellite-based data can be obtained with the same accuracy and at regular intervals, and is useful for long-term change analysis and environmental monitoring and wide area access in time and space. The Evaporative Stress Index (ESI), a satellite-based drought index using the ratio of potential and actual evaporation, is being used to detect drought response as a index of the droughts occurring rapidly over short periods of time. It is more accurate and provides faster analysis of drought conditions compared to the Standardized Precipitation Index (SPI), and the Palmer Drought Severity Index (PDSI). In this study, we analyze drought events during 2015-2017 in North Korea using the ESI satellite-based drought index to determine drought response by comparing with it with the SPI and SPEI drought indices.

Analysis of peak drought severity time and period using meteorological and hydrological drought indices (기상학적 가뭄지수와 수문학적 가뭄지수를 이용한 첨두가뭄심도 발생시점 및 가뭄기간 분석)

  • Kim, Soo Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.471-479
    • /
    • 2018
  • This study analyzed the peak time of drought severity and drought period using meteorological and hydrological drought indices. Standardized Precipitation Index (SPI) using rainfall data was used for meteorological drought and Streamflow Drought Index (SDI) and Standardized Streamflow Index (SSI) using streamflow data were used for the hydrological drought. This study was applied to the Cheongmicheon watershed which is a mixture area for rural and urban regions. The rainfall data period used in this study is 32.5 years (January of 1985~June of 2017) and the corresponding streamflow was simulated using SWAT. After the drought indices were calculated using the collected data, the characteristics of drought were analyzed by time series distribution of the calculated drought indices. Based on the results of the this study, it can be seen that hydrological drought occurs after meteorological drought. The difference between SDI and SPI peak occurrence time, difference in drought start date and average drought duration is greater than SSI and SPI. In general, SSI shows more severe than SDI. Therefore, various drought indices should be used at the identification of drought characteristics.