• Title/Summary/Keyword: SPECTRUM

Search Result 12,541, Processing Time 0.039 seconds

Capacity Spectrum Method for Seismic Performance Evaluation of Multi-Story Building Based on the Story Drift (층간변위를 기반으로 한 다층구조물의 내전성능 평가를 위한 역량스펙트럼법의 개발)

  • Kim, Sun-Pil;Kim, Doo-Kie;Kwak, Hyo-Gyoung;Ko, Sung-Huck;Seo, Hyeong-Yeol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.205-210
    • /
    • 2007
  • The existing capacity spectrum method (CSM) is based on the displacement based approach for seismic performance and evaluation. Currently, in the domestic and overseas standard concerning seismic design, the CSM to obtain capacity spectrum from capacity curve and demand spectrum from elastic response spectrum is presented. In the multistory building, collapse is affected more by drift than by displacement, but the existing CSM does not work for story drift. Therefore, this paper proposes an improved CSM to estimate story drift of structures through seismic performance and evaluation. It uses the ductility factor in the A-T domain to obtain constant-ductility response spectrum from earthquake response of inelastic system using the drift and capacity curve from capacity analysis of structure.

  • PDF

Breaking Directional Wave Spectrum in Water of Variable Depth in the Presence of Current (쇄파와 조류의 영향을 고려한 천해성에서의 Wave Spectrum에 대한 연구)

  • 조용준
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.76-83
    • /
    • 1993
  • In this study, an approximate method for calculating the directional spectrum of waves encountering a current in shallow water is developed. The wave trains in tile directional spectrum are assumed to be linear and Gaussian; development of the spectrum requires that the waves also be short crested. The Miche's breaking criterion is imposed to determine the upper limit of wave height and to establish an expression for the breaking wave elevation in terms of the ideal wave's elevation and the second time derivative of wave elevation. Two examples are given; one for a Wallops directional spectrum encountering a shear current and another with an upwelling current.

  • PDF

Performance Analysis of Amplify and Forward (AF)-based Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Khan, Muhammad Sajjad;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.223-228
    • /
    • 2013
  • Cognitive radio has been recently considered a promising technology to improve spectrum utilization by enabling secondary access to licensed bands that are not used by primary users temporarily or spatially. A prerequisite to this secondary access is the lack of interference to the primary system. This requirement makes spectrum sensing a key process for cognitive radio. In this study, we consider amplify and forward (AF)-based cooperative spectrum sensing for cognitive radio networks where multiple relay nodes are utilized to amplify and forward the primary user signal for better spectrum sensing, and maximum ratio combining is used for fusion detection by a cognitive coordinator. Further, the detection probability and the bit error rate of AF-based cooperative spectrum sensing are analyzed in fading multiple cognitive relay channels. The simulation results show that the AF-based cooperative spectrum sensing scheme outperforms the conventional scheme.

On Formant Extraction Based on Transfer Function

  • Jiang, Gang-Yi;Park, Tae-Young;Mei Yu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2E
    • /
    • pp.31-38
    • /
    • 1999
  • This paper focuses on extracting formants from transfer function, derived from linear prediction analysis of speech signal. The second derivative of the log magnitude spectrum of the transfer function, the first and third derivatives of the phase spectrum of the transfer function in the z-plane are discussed. Their resolutions of detecting formants are analyzed and some comparisons are given. Theoretical analyses and experimental results show that the third derivative of the phase spectrum decays more rapidly around the formant locations than the first derivative of the phase spectrum and the second derivative of the log magnitude spectrum. Compared with the second derivative of the log spectrum and the first derivative of the phase spectrum, the third derivative of the phase spectrum has higher resolution in frequency domain and provides more accurate formant extraction.

  • PDF

The Solution of Insufficiency of Radio Frequency Spectrum in Republic of Kazakhstan

  • Abishev Olzhas;Jo Dong-Kwan;Chung Joong-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.549-554
    • /
    • 2006
  • The objective of this paper is to propose a system by means of which the utilization of radio frequency spectrum may be improved from the state of extreme inefficiency at the present time in Kazakhstan to a state of efficiency and equilibrium in the future. The main solutions to efficiently use radio frequency spectrum in Kazakhstan will be described in this paper. There are 'Spectrum Utilization, Spectrum Sharing and Reuse the Spectrum' in which the radio frequency can be propagated in wide range using smalt amount of spectrum, or broadcast several channels via one spectrum sharing. In order to embed these systems in practice it will be better to make modifications consider Government policy and geographical and social requirements.

  • PDF

Seismic Fragility Analysis of NPP Components for High Frequency Ground Motions (고진동수 지진동에 대한 원전 기기의 지진취약도 분석)

  • 최인길;서정문;전영선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.110-117
    • /
    • 2003
  • The result of recent seismic hazard analysis indicates that the ground motion response spectra for Korean nuclear power plant site have relatively large high frequency acceleration contents. In the ordinary seismic fragility analysis of nuclear power plant structures and equipments, the safety margin of design ground response spectrum is directly used as a response spectrum shape factor. The effects of input response spectrum shape on the floor response spectrum were investigated by performing the direct generation of floor response spectrum from the ground response spectrum. The safety margin included in the design ground response spectrum should be considered as a floor response spectrum shape factor for the seismic fragility analysis of the equipments located in a building.

  • PDF

Quickest Spectrum Sensing Approaches for Wideband Cognitive Radio Based On STFT and CS

  • Zhao, Qi;Qiu, Wei;Zhang, Boxue;Wang, Bingqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1199-1212
    • /
    • 2019
  • This paper proposes two wideband spectrum sensing approaches: (i) method A, the cumulative sum (CUSUM) algorithm with short-time Fourier transform, taking advantage of the time-frequency analysis for wideband spectrum. (ii)method B, the quickest spectrum sensing with short-time Fourier transform and compressed sensing, shortening the time of perception and improving the speed of spectrum access or exit. Moreover, method B can take advantage of the sparsity of wideband signals, sampling in the sub-Nyquist rate, and it is more suitable for wideband spectrum sensing. Simulation results show that method A significantly outperforms the single serial CUSUM detection for small SNRs, while method B is substantially better than the block detection based spectrum sensing in small probability of the false alarm.

Complexity based Sensing Strategy for Spectrum Sensing in Cognitive Radio Networks

  • Huang, Kewen;Liu, Yimin;Hong, Yuanquan;Mu, Junsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4372-4389
    • /
    • 2019
  • Spectrum sensing has attracted much attention due to its significant contribution to idle spectrum detection in Cognitive Radio Networks. However, specialized discussion is on complexity-based sensing strategy for spectrum sensing seldom considered. Motivated by this, this paper is devoted to complexity-based sensing strategy for spectrum sensing. Firstly, three efficiency functions are defined to estimate sensing efficiency of a spectrum scheme. Then a novel sensing strategy is proposed given sensing performance and computational complexity. After that, the proposed sensing strategy is extended to energy detector, Cyclostationary feature detector, covariance matrix detector and cooperative spectrum detector. The proposed sensing strategy provides a novel insight into sensing performance estimation for its consideration of both sensing capacity and sensing complexity. Simulations analyze three efficiency functions and optimal sensing strategy of energy detector, Cyclostationary feature detector and covariance matrix detector.

Spectrum Requirements for the Future Development of IMT-2000 and Systems beyond IMT-2000 (4세대 이동통신 서비스 주파수 소요량에 관한 연구)

  • Chung Woo-Ghee;Yoon Hyun-Goo;Lim Jae-Woo;Yook Jong-Gwan;Park Han-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.110-116
    • /
    • 2006
  • In this paper the algorithm of a methodology for the calculation of spectrum requirements was implemented. As well, the influence of traffic distribution ratio among radio access technology groups, spectral efficiency, and flexible spectrum usage(FSU) margin was analyzed in terms of the spectrum requirements, with a view toward for future development of IMT-2000 and systems beyond IMT-2000. The ratio of the spectrum requirement to the traffic distribution ratio is approximately $1\;GHz/20\;\%$, and the spectrum requirement varies from 5 to 9 GHz. As the FSU margin increases by 1.0 dB, the total spectrum requirement decreases by 0.9 dB. The required spectrum for the market input parameter, ${\rho}=0.5$ is 801.63 MHz, while the required spectrum for ${\rho}=1.0$ is 6295.4 MHz. It can be concluded that the market input parameter is the most effective parameter in the calculation of spectrum requirements.

Point-to-Point Communication of Cognitive Radios via Underlay Spectrum Sharing (언더레이 주파수 공유를 이용한 인지무선 통신장치의 점대점 통신방법)

  • Lee, Hye-Won;Han, Kwang-Hun;Hwang, Young-Woo;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.697-703
    • /
    • 2009
  • Cognitive radios are typically known to exploit vacant spectrum resources in order not to interfere with primary communication systems. However, cognitive radios may not be able to secure a clear spectrum band in a bustling spectrum band. Underlay spectrum sharing provides a way to cope with such a spectrum sharing problem. Cognitive radios share the same spectrum band with the spectrum licensees, i.e., primary users, by adjusting signal transmission power so as not to severely deteriorate the performance of the primary users. We propose an underlay spectrum sharing policy leveraging uplink spectrum resource to be used in a cellular network. A pair of end terminals attempts to establish a direct point-to-point link, and perform as cognitive radios in the sense that they share the uplink radio resource of other primary users. We formulate the transmit power constraints of the cognitive radios and propose a practical uplink band sharing framework. Our simulation results demonstrate that such an uplink sharing underlay direct link can enhance the throughput performance of point-to-point link with low overhead.