• Title/Summary/Keyword: SPECIES TRAITS

Search Result 460, Processing Time 0.024 seconds

Comparative studies on the Hanabusaya asiatica and its allied groups 2. Ultrastructure of epidermis, Palynological characters and Isoyme pat (금강초롱꽃 (Hanabusaya asiatica) 과 근연분류군의 비교연구 2. 표피의 미세구조, 화분학적 형질 및 동위원소 분석)

  • 유기억
    • Korean Journal of Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.303-318
    • /
    • 1995
  • Microscopic structures of epidermis and palynology and isozyme analysis were examined to find out the intergeneric and interspecific relationships and consequently to confirm the position of Hanabusaya aiatica as an endemic genus among 4 genera and 9 species belonging to the Hanabusaya asiatica, Korean endemic, and its allied groups. In the examination of microscopic structures of epidermis, cell patterns of perianth and ultrastructure of seed coat were found to be useful characters for the identification of the 4 genera and 9 species. Palynological characters such as microscopic structure and overall morphology of pollen grains were, however, not enough to distinguish them because of the great variabilities in these traits. Isozyme analysis showed that H. asiatica was very closly related to Campanula punctata and C. takesimana, though there were variations among populations and collected areas in some classified groups, depending on classified groups. Based on these results, the position of H. asiatica as an endemic genus was well confirmed.

  • PDF

Genetic Diversity and Population Structure of Pyrola fauriena (Pyrolaceae) in Korea (한국내 주걱노루발의 유전적 다양성과 집단구조)

  • Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2006
  • Starch gel electrophoresis was used to estimate genetic diversity and population structure of Pyrola fauriena H. Andr. in Korea. The percentage of polymorphic loci within enzymes was $57.1\%$. The values of genetic diversity at the species level and at the population were higher than average values for herbaceous with similar life history traits (Hes : 0.149; Hep = 0.134, respectively), whereas the extent of the population divergence was relatively low $(G_{ST}=0.082)$. $F_{IS}$, a measure of the deviation from random mating within the 12 populations, was 0.298. An indirect estimate of the number of migrants per, generation (Nm = 2.81) indicates that gene flow is moderate among Korean populations of the species. Analysis of fixation indices revealed a substantial heterozygosity deficiency in some populations and at some loci. This indicates that some populations sampled may have been substructured largely due to rhizotamous spread and decrease of population sizes.

Growth Difference among Saplings of Quercus acutissima, Q. variabilis and Q. mongolica under the Environmental Gradients Treatment (환경구배처리에 따른 상수리나무, 굴참나무와 신갈나무의 생육 차이)

  • Jeong, Heon-Mo;Kim, Hae-Ran;You, Young-Han
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.82-87
    • /
    • 2009
  • In order to characterize the ecological traits of Quercus acutissima, Q. variabilis and Q. mongolica, which dominated in Korean mountain, we treated the sapling of the three oak species under the major environment factors (light, soil moisture and nutrient) with four gradient levels, for 8 months in glass house. Then we measured and analyzed the growth difference among them. The growth of Q. acutissima and Q. variabilis were increased with higher light intensity, but there is no apparent trend in Q. mongolica for light gradients. Q. mongolica did not show high reduction of growth, even in the lowest light intensity. Q. variabilis and Q. mongolica had a constant growth state to soil moisture treatment, but only Q. acutissima grew well in higher soil moisture gradient condition. All the growth of three oak species decreased with higher nutrient gradient condition. The growth reduction was increased in order of Q. variabilis, Q. mongolica and Q. acutissima. with increased nutrient gradient level. These results means that Q. mongolica, Q. acutissima and Q. variabilis have adaptation ability to shade, high moisture and low nutrient condition, respectively.

Canine Mesenchymal Stem Cells Derived from Bone Marrow: Isolation, Characterization, Multidifferentiation, and Neurotrophic Factor Expression in vitro

  • Jung, Dong-In;Ha, Jeong-Im;Kim, Ju-Won;Kang, Byeong-Teck;Yoo, Jong-Hyun;Park, Chul;Lee, Jong-Hwan;Park, Hee-Myung
    • Journal of Veterinary Clinics
    • /
    • v.25 no.6
    • /
    • pp.458-465
    • /
    • 2008
  • The purpose of this study is to characterize canine mesenchymal stem cells (MSCs) derived from bone marrow (BM) for use in research on the applications of stem cells in canine models of development, physiology, and disease. BM was harvested antemortem by aspiration from the greater tubercle of the humerus of 30 normal beagle dogs. Canine BM-derived MSCs were isolated according to methods developed for other species and were characterized based on their morphology, growth traits, cell-surface antigen profiles, differentiation repertoire, immunocytochemistry results, and neurotrophic factor expression in vitro. The canine MSCs exhibited a fibroblast-like morphology with a polygonal or spindle-shaped appearance and long processes; further, their cell-surface antigen profiles were similar to those of their counterparts in other species such as rodents and humans. The canine MSCs could differentiate into osteocytes and neurons on incubation with appropriate induction media. RT-PCR analysis revealed that these cells expressed NGF, bFGF, SDF-1, and VEGF. This study demonstrated that isolating canine MSCs from BM, stem-cell technology can be applied to a large variety of organ dysfunctions caused by degenerative diseases and injuries in dogs. Furthermore, our results indicated that canine MSCs constitutively secrete endogenous factors that enhance neurogenesis and angiogenesis. Therefore, these cells are potentially useful for treating dogs affected with various neurodegenerative diseases and spinal-cord injuries.

A Polymorphism Analysis and Visualization Tool for Specific Variation Pattern Identification in Groups of Nucleotide Sequences (특정변화패턴 식별을 위한 염기서열 집단간의 다형성 분석 및 시각화 도구)

  • Lee, Il Seop;Lee, Keon Myung
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.201-207
    • /
    • 2018
  • A genome contains all genetic information of an organism. Within a specific species, unique traits appear for each individual, which can be identified by analyzing nucleotide sequences. Many Genome-Wide Associations Studies have been carried out to find genetic associations and cause of diseases from slightly different base among the individuals. It is important to identify occurrence of slight variations for polymorphisms of individuals. In this paper, we introduce an analysis and visualization tool for specific variation pattern identification of polymorphisms in nucleotide sequences and show the validity of the tool by applying it to analyzing nucleotide sequences of subcultured pOka strain of varicella-zoster virus. The tool is expected to help efficiently explore allele frequency variations and genetic factors within a species.

Isolation and Characterization of Cold-Adapted PGPB and Their Effect on Plant Growth Promotion

  • Li, Mingyuan;Wang, Jilian;Yao, Tuo;Wang, Zhenlong;Zhang, Huirong;Li, Changning
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1218-1230
    • /
    • 2021
  • Cold-adapted plant growth-promoting bacteria (PGPB) with multiple functions are an important resource for microbial fertilizers with low-temperature application. In this study, culturable cold-adapted PGPB strains with nitrogen fixation and phosphorus solubilization abilities were isolated. They were screened from root and rhizosphere of four dominant grass species in nondegraded alpine grasslands of the Qilian Mountains, China. Their other growth-promoting characteristics, including secretion of indole-3-acetic acid (IAA), production of siderophores and ACC deaminase, and antifungal activity, were further studied by qualitative and quantitative methods. In addition, whether the PGPB strains could still exert plant growth-promoting activity at 4℃ was verified. The results showed that 67 isolates could maintain one or more growth-promoting traits at 4℃, and these isolates were defined as cold-adapted PGPB. They were divided into 8 genera by 16S rRNA gene sequencing and phylogenetic analysis, of which Pseudomonas (64.2%) and Serratia (13.4%) were the common dominant genera, and a few specific genera varied among the plant species. A test-tube culture showed that inoculation of Elymus nutans seedlings with cold-adapted PGPB possessing different functional characteristics had a significant growth-promoting effect under controlled low-temperature conditions, including the development of the roots and aboveground parts. Pearson correlation analysis revealed that different growth-promoting characteristics made different contributions to the development of the roots and aboveground parts. These cold-adapted PGPB can be used as excellent strain resources suitable for the near-natural restoration of degraded alpine grasslands or agriculture stock production in cold areas.

Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India

  • Tiwari, Snigdha;Avchar, Rameshwar;Arora, Riya;Lanjekar, Vikram;Dhakephalkar, Prashant K.;Dagar, Sumit S.;Baghela, Abhishek
    • Mycobiology
    • /
    • v.48 no.6
    • /
    • pp.501-511
    • /
    • 2020
  • Xylophagous termites are capable of degrading lignocellulose by symbiotic gut microorganisms along with the host's indigenous enzymes. Therefore, the termite gut might be a potential niche to obtain natural yeasts with celluloytic, xylanolytic and ethanologenic traits required for bioethanol production from lignocellulosic biomass. In this study, we cultured 79 yeasts from three different termites viz. Coptotermes heimi, Odontotermes javanicus and Odontotermes obesus. After suitable screening methods, we identified 53 yeasts, which belonged to 10 genera and 16 different species of both ascomycetous and basidiomycetous yeasts. Most yeasts in the present study represent their first-ever isolation from the termite gut. Representative strains of identified yeasts were evaluated for their cellulolytic, xylanolytic, and ethanologenic abilities. None of the isolates showed cellulase activity; 22 showed xylanolytic activity, while six produced substantial quantities of ethanol. Among xylanolytic cultures, Pseudozyma hubeiensis STAG 1.7 and Hannaella pagnoccae STAG 1.14 produced 1.31 and 1.17 IU of xylanase. Among ethanologenic yeasts, the strains belonging to genera Candida and Kodamaea produced high amount of ethanol. Overall, highest ethanol level of 4.42 g/L was produced by Candida tropicalis TS32 using 1% glucose, which increased up to 22.92 g/L at 35 ℃, pH 4.5 with 5% glucose. Fermentation of rice straw hydrolysate gave 8.95 g/l of ethanol with a yield of 0.42 g/g using the strain TS32. Our study highlights the gut of wood-feeding termites as a potential source of diverse yeasts that would be useful in the production of xylanase and bioethanol.

Siderophore-producing rhizobacteria reduce heavy metal-induced oxidative stress in Panax ginseng Meyer

  • Huo, Yue;Kang, Jong Pyo;Ahn, Jong Chan;Kim, Yeon Ju;Piao, Chun Hong;Yang, Dong Uk;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.218-227
    • /
    • 2021
  • Background: Panax ginseng is one of the most important medicinal plants and is usually harvested after 5 to 6 years of cultivation in Korea. Heavy metal (HM) exposure is a type of abiotic stress that can induce oxidative stress and decrease the quality of the ginseng crop. Siderophore-producing rhizobacteria (SPR) may be capable of bioremediating HM contamination. Methods: Several isolates from ginseng rhizosphere were evaluated by in vitro screening of their plant growth-promoting traits and HM resistance. Subsequently, in planta (pot tests) and in vitro (medium tests) were designed to investigate the SPR ability to reduce oxidative stress and enhance HM resistance in P. ginseng inoculated with the SPR candidate. Results: In vitro tests revealed that the siderophore-producing Mesorhizobium panacihumi DCY119T had higher HM resistance than the other tested isolates and was selected as the SPR candidate. In the planta experiments, 2-year-old ginseng seedlings exposed to 25 mL (500 mM) Fe solution had lower biomass and higher reactive oxygen species level than control seedlings. In contrast, seedlings treated with 108 CFU/mL DCY119T for 10 minutes had higher biomass and higher levels of antioxidant genes and nonenzymatic antioxidant chemicals than untreated seedlings. When Fe concentration in the medium was increased, DCY119T can produce siderophores and scavenge reactive oxygen species to reduce Fe toxicity in addition to providing indole-3-acetic acid to promote seedling growth, thereby conferring inoculated ginseng with HM resistance. Conclusions: It was confirmed that SPR DCY119T can potentially be used for bioremediation of HM contamination.

Discovery of novel haplotypes from wild populations of Kappaphycus (Gigartinales, Rhodophyta) in the Philippines

  • Roleda, Michael Y.;Aguinaldo, Zae-Zae A.;Crisostomo, Bea A.;Hinaloc, Lourie Ann R.;Projimo, Vicenta Z.;Dumilag, Richard V.;Lluisma, Arturo O.
    • ALGAE
    • /
    • v.36 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • As the global demand for the carrageenophyte Kappaphycus is steadily increasing, its overall productivity, carrageenan quality, and disease resistance are gradually declining. In the face of this dilemma, wild Kappaphycus populations are viewed as sources of new cultivars that could potentially enhance production; therefore, assessment of their diversity is crucial. This study highlights the morphological and genetic diversity of wild Kappaphycus species obtained from two sites in the Philippines. Nucleotide alignments of available 5' region of the mitochondrial cytochrome c oxidase subunit I (COI-5P) and cox2-3 spacer sequences of Kappaphycus confirmed the presence of K. alvarezii in Guiuan, Eastern Samar and K. striatus in Bolinao, Pangasinan. Based on the concatenated sequences of the COI-5P and the cox2-3 spacer, nine novel haplotypes were observed along with other published haplotypes. However, there was no relationship between haplotype and morphology. These newly recognized haplotypes indicate a reservoir of unutilized wild genotypes in the Philippines, which could be taken advantage of in developing new cultivars with superior traits. DNA barcodes generated from this study effectively expand the existing databank of Kappaphycus sequences and can provide insights in elucidating the genetic diversity of Kappaphycus species in the country.

A study of the chromosome number and genome size of the rare species Rhododendron keiskei var. hypoglaucum in Korea

  • CHOI, Bokyung;KIM, Hyeonjin;BYUN, Hye-Joo;GANG, Geun-Hye;LEE, Yongsoon;MYEONG, Hyeon-Ho;SO, Soonku;JANG, Tae-Soo
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.2
    • /
    • pp.102-107
    • /
    • 2022
  • Rhododendron keiskei var. hypoglaucum (Ericaceae) was recently reported in Korea, with a disjunct distribution on the southern islands of the Korean Peninsula. Although chromosome numbers and ploidy variations are important traits in angiosperms, gaining a clear understanding the cytological features of Rhododendron has been hampered by the small size of its chromosomes. We herein report the chromosome number, karyotype structure, and genome size of R. keiskei var. hypoglaucum for the first time. The chromosome number of the investigated plants was 2n = 26 with x = 13 as the base chromosome number, which is the one of the frequently encountered base chromosome numbers in Rhododendron. The karyotype of R. keiskei var. hypoglaucum is composed of metacentric and submetacentric chromosomes similar in length, which ranged from 1.39 to 2.40 ㎛. The DNA 1C-value in all examined accessions was small, ranging from 0.63 to 0.65 pg, further supporting the stable genome size in Rhododendron. These comprehensive cytological results provide a framework for detailed molecular, cytogenetic, and phylogenomic analyses that can be used to interpret the slow species diversification rate in Rhododendron.