• Title/Summary/Keyword: SPE, wastewater

Search Result 12, Processing Time 0.025 seconds

Pesticide Analysis in Drinking Water by SPE Method (SPE법에 의한 음료수중 농약성분)

  • 김형석
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.2
    • /
    • pp.59-66
    • /
    • 1995
  • According to the population increase and industrialization, the drinking water source, Han River and other sources, are contaminated by industrial wastewater, domestic sewage, and agricultural discharges. Among the contaminants, and toxic substances, pesticides is most interesting items (or human health Our drinking water has some problems of THMs, Fe, odor, etc., $o many people use groundwater or bottled water. But sometimes there are many reports about groundwater contamination owing to the agricultural chemicals, waste disposal, industrial wastewater. In America, there are about 45,000 groundwave supply company and in korea about 20% of total population are using groundwave as drinking water source. In America, studies about SEE is increasing Instead of liquid- liquid extraction method, because of many advantages of SEE methods. Author tried to investigate SPE methods in the spiked water samples to compare with liquid- liquid extraction method and got the following results. The amount of organic solvents which are used In SPE method is less than 1/10 compared with liquid- liquid method, the analytical duration time is shortened, and the ethyl acetate was good fluent among several organic solvents.

  • PDF

Determination of antibiotics by SPE-LC-MS/MS in wastewater and risk assessment

  • Aydin, Senar;Aydin, Mehmet E.;Ulvi, Arzu;Kilic, Havva
    • Advances in environmental research
    • /
    • v.7 no.3
    • /
    • pp.201-212
    • /
    • 2018
  • In this study, conditions of solid phase extraction (SPE) for determination of some antibiotics such as trimethoprim, oxytetracycline, erythromycin, clarithromycin, azythromycin, doxycycline, sulfamethazine, ciprofloxacin, chlortetracycline, sulfamethoxazole in wastewaters were optimized. After the optimum volume and pH of the sample were determined, the effect of the concentration of the compounds and matrix were investigated. The highest recovery rates for antibiotic compounds were determined between 82% and 105% in 200 mL sample volume and pH 2.5. Then, antibiotic compounds were investigated in influent and effluent samples taken from Konya Urban Wastewater Treatment Plant. The concentration of the antibiotics was detected range of 0.11-101 ng/L in influent waters and

TOXICITY IDENTIFICATION AND CONFIRMATION OF METAL PLATTING WASTEWATER

  • Kim, Hyo-Jin;Jo, Hun-Je;Park, Eun-Joo;Cho, Ki-Jong;Shin, Key-Il;Jung, Jin-Ho
    • Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.16-20
    • /
    • 2007
  • Toxicity of metal plating wastewater was evaluated by using acute toxicity tests on Daphnia magna. To identify toxicants of metal plating wastewater, several manipulations such as solid phase extraction (SPE), ion exchange and graduated pH adjustment were used. The SPE test had no significant effect on baseline toxicity, suggesting absence of toxic non-polar organics in metal plating wastewater. However, anion exchange largely decreased the baseline toxicity by 88%, indicating the causative toxicants were inorganic anions. Considering high concentration of chromium in metal plating wastewater, it is thought the anion is Cr(VI) species. Graduated pH test showing independence of the toxicity on pH change strongly supports this assumption. However, as revealed by toxicity confirmation experiment, the initial toxicity of metal plating wastewater (24-h TU=435) was not explained only by Cr(VI) (24-h TU = 725 at $280\;mg\;L^{-1}$). Addition of nickel($29.5\;mg\;L^{-1}$) and copper ($26.5\;mg\;L^{-1}$) largely decreased the chromium toxicity up to 417 TU, indicating antagonistic interaction between heavy metals. This heavy metal interaction was successfully predicted by an equation of 24-h $TU\;=\;3.67\;{\times}\;\ln([Cu]\;+\;[Ni])\;+\;79.44$ at a fixed concentration of chromium.

Degradation of Rhodamine B in Water using Solid Polymer Electrolyte (SPE) in the Electrolysis Process (고체 고분자 전해질(SPE)을 이용한 전기분해 공정에서 Rhodamine B 분해)

  • Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.137-146
    • /
    • 2014
  • Objectives: Feasibility of electrochemical oxidation of the aqueous non-biodegradable wastewater such as cationic dye Rhodamine B (RhB) has been investigated in an electrochemical reactor with solid polymer electrolyte (SPE). Methods: Nafion 117 cationic exchange membrane as SPE has been used. Anode/Nafion/cathode sandwiches were constructed by sandwiching Nafion between two dimensionally stable anodes (JP202 electrode). Experiments were conducted to examine the effects of applied current (0.5~2.0 A), supporting electrolyte type (0.2 N NaCl, $Na_2SO_4$, and 1.0 g/L NaCl), initial RhB concentration (2.5~30.0 mg/L) on RhB and COD degradation and $UV_{254}$ absorbance. Results: Experimental results showed that an increase of applied current in electrolysis reaction with solid polymer electrolyte has resulted in the increase of RhB and $UV_{254}$ degradation. Performance for RhB degradation by electrolyte type was best with NaCl 0.2 N followed by SPE, and $Na_2SO_4$. However, the decrease of $UV_{254}$ absorbance of RhB was different from RhB degradation: SPE > NaCl 0.2 N > $Na_2SO_4$. RhB and $UV_{254}$ absorbance decreased linearly with time regardless of the initial concentration. The initial RhB and COD degradation in electrolysis reaction using SPE showed a pseudo-first order kinetics and rate constants were 0.0617 ($R^2=0.9843$) and 0.0216 ($R^2=0.9776$), respectively. Conclusions: Degradation of RhB in the electrochemical reactor with SPE can be achieved applying electrochemical oxidation. Supporting electrolyte has no positive effect on the final $UV_{254}$ absorbance and COD degradation. Mineralization of COD may take a relatively longer time than that of the RhB degradation.

Determination of 11 Phenolic Endocrine Disruptors using Gas Chromatography/Mass Spectrometry-Selected Ion Monitoring in Five Selected Wastewater Influents

  • Kim, Hyub
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.216-223
    • /
    • 2008
  • An efficient method for the simultaneous determination of eleven phenolic endocrine-disrupting chemicals (EDCs) present in wastewater influent samples was described. The 11 phenolic EDCs including alkylphenols, chlorophenols, and bisphenol A were determined by gas chromatography/mass spectrometry-selected ion monitoring (GC/MS-SIM) following two work-up methods for comparison; isobutoxycarbonyl (isoBOC) derivatization and tert-butyldimethylsilyl (TBDMS) derivatization. The wastewater influent samples containing the 11 EDCs were adjusted to pH 2 with $H_2SO_4$ and then cleaned up with n-hexane. Next, they were subjected to solid-phase extraction (SPE) with XAD-4 resin and subsequently converted to isoBOC or TBDMS derivatives for sensitivity analysis with gas chromatography/mass spectrometry-selected ion monitoring (GC/MSSIM). Following isoBOC derivatization and TBDMS derivatization, the recoveries were 86.6-105.2% and 97.6-142.7%, the limits of quantitation (LOQ) for the 11 phenolic EDCs for SIM was 0.001-0.050 ng/mL and 0.003-0.050 ng/mL, and the SIM responses were linear with the correlation coefficient varying by 0.9717-0.9995 and 0.9842-0.9980, respectively. When these methods were applied to five selected wastewater influent samples, for isoBOC derivatization and TBDMS derivatization the ranges of concentration detected were 0.2-99.6 ng/mL and 0.4-147.4 ng/mL, respectively.

Evaluation and application of pretreatment methods for pharmaceuticals and personal care products in the solid phase of sewage samples (하수처리시설 고상시료 중 잔류의약물질 분석을 위한 전처리법 평가 및 적용)

  • Park, Junwon;Kim, Changsoo;Ju, Byoungkyu;Lee, Wonseok;Chung, Hyenmi;Jeong, Dong-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.559-572
    • /
    • 2018
  • The aim of this study was to evaluate pretreatment methods for 27 pharmaceuticals and personal care products (PPCPs) in various sewage samples using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) and online solid-phase extraction with LC-MS/MS. Extraction efficiencies of PPCPs in the solid phase under different experimental conditions were evaluated, showing that the highest recoveries were obtained with the addition of sodium sulfate and ethylenediaminetetraacetic acid disodium salt dehydrate in acidified conditions. The recoveries of target compounds ranged from 91 to 117.2% for liquid samples and from 61.3 to 137.2% for solid samples, with a good precision. The methods under development were applied to sewage samples collected in two sewage treatment plants (STPs) to determine PPCPs in liquid and solid phases. Out of 27 PPCPs, more than 19 compounds were detected in liquid samples (i.e., influent and effluent) of two STPs, with concentration ranges of LOQ-33,152 ng/L in influents and LOQ-4,523 ng/L in effluents, respectively. In addition, some PPCPs such as acetylsalicylic acid, ibuprofen, and ofloxacin were detected at high concentrations in activated sludge as well as in excess sludge. This methodology was successfully applied to sewage samples for the determination of the target compounds in STPs.

Simultaneous Determination and Occurrences of Pharmaceuticals by Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) in Environmental Aqueous Samples

  • Koo, So-Hyun;Jo, Cheon-Ho;Shin, Sun-Kyoung;Myung, Seung-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1192-1198
    • /
    • 2010
  • Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in the aquatic environment. Many pharmaceuticals are not completely removed during wastewater treatment, leading to their presence in wastewater treatment effluents, rivers, lakes, and ground water. Here, we developed analytical methods for monitoring ten pharmaceuticals from surface water by LC/ESI-MS/MS. For sample clean-up and extraction, MCX (mixed cation exchange) and HLB (hydrophilic-lipophilic balance) solid-phase extraction (SPE) cartridges were used. The limits of detection (LOD) in distilled water and the blank surface water were in the range of 0.006 - 0.65 and 1.66 - 45.05 pg/mL, respectively. The limits of quantitation (LOQ) for the distilled water and the blank surface water were in the range of 0.02 - 2.17 and 5.52 - 150.15 pg/mL, respectively. The absolute recoveries for fortified water samples were between 62.1% and 125.4%. Intra-day precision and accuracy for the blank surface water were 2.9% - 24.1% (R.S.D.) and -16.3% - 16.3% (bias), respectively. In surface wastewater near rivers, chlortetracycline and acetylsalicylic acid were detected frequently in the range of 0.017 - 5.404 and 0.029 - 0.269 ng/mL, respectively. Surface water near rivers had higher levels than surface water of domestic treatment plants.

Simultaneous Determination and Monitoring of Bisphenols in River Water using Gas Chromatography-Mass Spectrometry (GC-MS 를 이용한 하천수 중 Bisphenol계 화합물의 동시분석 및 모니터링)

  • Kim, Jihyun;Choi, Jeong-Heui;Kang, Tae-Woo;Kang, Taegu;Hwang, Soon-Hong;Shim, Jae-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.154-160
    • /
    • 2017
  • BACKGROUND:This study was carried out to establish an efficient sample preparation for the simultaneous determination of bisphenols (BPs) in river water samples using gas chromatography-mass spectrometry (GC-MS). Sample preparation was examined with conventional extraction methods, such as solid-phase extraction (SPE) and liquid-liquid extraction (LLE), and their efficiency was compared with validation results, including linearity of calibration curve, method detection limit (MDL), limit of quantification (LOQ), accuracy, and precision. METHODS AND RESULTS:The BPs (bisphenol A, BPA; bisphenol B, BPB; bisphenol C, BPC; bisphenol E, BPE; bisphenol F, BPF; bisphenol S, BPS) were analyzed using GC-MS. The range of MDLs by SPE and LLE methods was $0.0005{\sim}0.0234{\mu}g/L$ and $0.0037{\sim}0.2034{\mu}g/L$, and that of LOQs was $0.0015{\sim}0.0744{\mu}g/L$ and $0.0117{\sim}0.6477{\mu}g/L$, respectively. The calibration curve obtained from standard solution of $0.004{\sim}4.0{\mu}g/L$ (SPE) and $0.016{\sim}16{\mu}g/L$ (LLE) showed good linearity with $r^2$ value of 0.9969 over. Accuracy was 93.2~108% and 97.4~120%, and precision was 1.7~4.6% and 0.7~6.5%, respectively. The values of MDL and LOQ resulted from the SPE method were higher than those from the LLE method, particularly those values of BPA were highest among the BPs. Based on the results, the SPE method was applied to determine the BPs in river water samples. Water samples were collected from mainstream, tributary and sewage wastewater treatment plants (SWTPs) in the Yeongsan river basin. The concentration of BPB, BPC, BPE, BPF and BPS were not detected in all sites, whereas BPA was ranged $0.0095{\sim}0.2583{\mu}g/L$, which was $0.0166{\sim}0.0810{\mu}g/L$ for mainstreams, $0.0095{\sim}0.2583{\mu}g/L$ for tributaries, $0.0352{\sim}0.1217{\mu}g/L$ for SWTPs. CONCLUSION: From these results, the SPE method was very effective for the simultaneous determination of BPs in river water samples using GC-MS. We provided that it is a convenient, reliable and sensitive method enough to monitor and understand the fate of the BPs in aquatic ecosystems.

Risk assessment and distribution characteristics of N-nitrosamines in drinking water treatment plants (나이트로사민류의 국내 정수장 분포 특성 및 위해성 평가)

  • Son, Boyoung;Lee, Leenae;Yang, Mihee;Park, Sangmin;Pyo, Heesoo;Lee, Wonsuk;Park, Juhyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.389-398
    • /
    • 2018
  • A nationwide survey of 8 N-nitrosamines in finished water samples from drinking water treatment plants (DWTPs) in Korea was conducted. The samples were pre-treated by solid-phase extraction (SPE) and analyzed using a gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). According to the study results, four N-nitrosamines (NDMA, NDEA, NMOR, NDBA) were detected for three consecutive years, NMEA and NPYR were only found in samples collected in 2013. Two of these N-nitrosamines, N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA), have received attention and were the most commonly detected. The concentration of NDMA and NDEA in this study ranged from $0.002{\mu}g/L$ to $0.013{\mu}g/L$ and in $0.001{\mu}g/L$ to $0.008{\mu}g/L$, respectively. In comparison to studies performed in EPA(UCMR2), the concentrations of NDMA (from $0.002{\mu}g/L$ to $0.630{\mu}g/L$) and NDEA (from $0.005{\mu}g/L$ to $0.100{\mu}g/L$) observed in the this study were low.

Optimized Design of Dioxin Analysis for Water Sample

  • Choi, Jaewon;Lee, Jaehee;Kim, Kyoungsim;Kim, Sunheong;Bae, Kyunghee
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.219-229
    • /
    • 2005
  • The analytical methods for dioxins in water sample from wastewater to tap water were reviewed. For extraction method, liquid-liquid extraction (LLE) has been widely used, however, this process needs too much time and man power. New approach including solid phase extraction (SPE) is now applicable to large volume of water sample with high extraction efficiency. Column clean up in classical analytical methods were very complex and time consuming procedures during decade. Modifications were tried to decrease solvent and reagents volume. Moreover, use of column connection method has been demonstrated in the environmental matrices. Instrumental configurations also have been improved, in which GC/MS/MS with large volume injection approach can analyze picogram levels. Absolute sensitivities of HRMS increased compared to old versions of double focusing sector type mass spectrometers. Based on these analytical evolutions during last 10 years, we tried to optimize the analytical method for dioxins in water sample from sample extraction to instrumental analysis.