• Title/Summary/Keyword: SPCP Reactor

Search Result 15, Processing Time 0.015 seconds

Effect of Electrode Process Variables in case of Decomposition of $NO_{x}$ by SPCP (연면방전에 의한 질소산화물의 분해시 전극 공정변수에 대한 영향)

  • 안형환;강현춘
    • Journal of the Korea Safety Management & Science
    • /
    • v.1 no.1
    • /
    • pp.241-258
    • /
    • 1999
  • For hazardous air pollutants(HAP) such as NO and $NO_{2}$ decomposition efficiency, power consumption, and applied voltage were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of HAP with various electric frequencies(5~50 kHz), flow rates(100~1,000 mL/min), initial concentrations(100~1,000 ppm), electrode materials(W, Cu, Al), electrode thickness(1, 2, 3 mm) and number of electrode windings(7, 9, 11) were measured. Experimental results showed that for the frequency of 10 kHz, the highest decomposition efficiency of 94.3 % for NO and 84.7 % for $NO_{2}$ were observed at the power consumptions of 19.8 and 20W respectively and that decomposition efficiency decreased with increasing frequency above 20 kHz. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3 mm in this experiment. As the electrode material, decomposition efficiency was in order : tungsten(W), copper(Cu), aluminum(Al).

  • PDF

A study of decomposition of harmful gases using Composite catalyst by Photocatalytic plasma reactions (복합촉매를 이용한 플라즈마 반응에 의한 유해가스의 제거에 관한 연구)

  • Kim, Gwan-Jung;U, In-Seong;Park, Hwa-Yong;Lee, Hong-Ju
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.421-433
    • /
    • 2012
  • The objective of this study is to obtain the optimal process condition and the maximum decomposition efficiency by measuring the decomposition efficiency, electricity consumption, and voltage in accordance with the change of the process variables such as the frequency, maintaining time period, concentration, electrode material, thickness of the electrode, the number of windings of the electrode, and added materials etc. of the harmful atmospheric contamination gases such as NO, $NO_2$, and $SO_2$etc. with the plasma which is generated by the discharging of the specially designed and manufactured $TiO_2$ catalysis reactor and SPCP reactor.

  • PDF

Effect of Electrode Process Variables in case of Decomposition of $NO_x$ by SPCP (연면방전에 의한 질소산화물의 분해시 전극 공정변수에 대한 영향)

  • 안형환;강현춘
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.543-563
    • /
    • 1999
  • For hazardous air pollutants(HAP) such as NO and $NO_2$ decomposition efficiency, power consumption, and applied voltage were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of HAP with various electric frequencies(5~50 kHz), flow rates(100~1,000 mL/min) initial concentrations(100~1,000 ppm), electrode materials(W, Cu, Al), electrode thickness(1, 2, 3 mm) and number of electrode windings(7, 9, 11) were measured. Experimental results showed that for the frequency of 10 kHz, the highest decomposition efficiency of 94.3% for NO and 84.7% for $NO_2$ were observed at the poser consumptions of 19.8 and 29W respectively and that decomposition efficiency decreased with increasing frequency above 20 kHz. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3mm in this experiment. As the electrode material, decomposition efficiency was in order : tungsten(W), copper(Cu), aluminum(Al).

  • PDF

Decomposition of CFC-12($CCl_2F_2$) by Discharge Plasma (방전 플라스마에 의한 CFC-12($CCl_2F_2$)의 분해)

  • 강현춘;우인성;황명환;안형환;이한섭;조정국;강안수
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.93-100
    • /
    • 1999
  • Decomposition efficiency, power consumption, and applied voltage of CFC(Chlorofluorocatbon) were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of CFC-12 with various electric frequencies(5~50kHz). flow rates (100~1,000mL/min), initial concentrations(100~1,000ppm), electrode materials(W, Cu, Al). electrode thickness(1, 2, 3mm) and reference gases($N_2$, $O_2$, air) were measured and the products were analyzed with FT-IR. Experimental results showed that at the frequency of 10kHz, the highest decomposition efficiency of 92.7% for CFC-12 were observed at the power consumptions of 29.6W. respectively, and that decomposition efficiency decreased with increasing frequency above 20kHz and decomposition efficiency per unit power were 3.13%/W for CFC-12. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3m. As the electrode material, decomposition efficiency was in order that tungsten(W), copper(Cu), aluminum (Al). Decomposition of CFC-12 in the reference gas of $N_2$ showed the highest efficiency among three reference gases, and then the effect of reference gas on the decomposition efficiency decreased in order of air and $O_2$. The optimum power for the maximum decomposition efficiency was 25.3W for CFC.

  • PDF

Effect of CH4 Addition in Case of Decomposition of NOx, SOx by Discharge Plasma (방전플라스마에 의한 NOx, SOx 분해시 메탄첨가의 영향)

  • Kang, Hyun-Choon;Woo, In-Sung;Kang, An-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.70-77
    • /
    • 2000
  • For hazardous air pollutants(HAP) such as NO, $NO_2$ and $SO_2$ decomposition efficiency, power consumption, and applied voltage were investigated by SPCP(Surface induced discharge Plasma Chemical Processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of HAP with various electric frequencies(5~50 kHz), flow rates(100~1,000 mL/min), initial concentrations(100~1,000 ppm) and additive($CH_4$) were measured and the products were analyzed with FT-IR. Experimental results showed that for the frequency of 10 kHz, the highest decomposition efficiency of 94.3 % for NO, 84.7 % for $NO_2$ and 99 % far $SO_2$ were observed at the power consumptions of 19.8, 20 and 19W, respectively, and that decomposition efficiency decreased with increasing frequency above 20 kHz. And decomposition efficiency per unit power were 5.21 %/W for $SO_2$, 4.76 %/W for NO and 4.24 %/W for $NO_2$ and the highest decomposition efficiency was observed with $SO_2$. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. When the additive of $CH_4$ was used, decomposition efficiency was increased with increasing $CH_4$ content, and NO, $NO_2$ and $SO_2$ were almost completely decomposed with the efficiency of 99 %, 98 % and 99 %, respectively and therefore $CH_4$ was a good additive material. The optimum power for the maximum decomposition efficiency were 7.5 W for $SO_2$, 9.5 W for NO and 15.5 W for $NO_2$, respectively. Optimum power with the maximum decomposition efficiency were 9.5 W at 1,000 ppm of NO, 7~8 W at 100~500 ppm of NO and 15.5 W at all concentration range of $NO_2$ and 11.5 W at 1,000 ppm, 4.9 W at 500 ppm, 3.7 W at 100~300 ppm of $SO_2$ and power efficiency was best in these case.

  • PDF