• Title/Summary/Keyword: SP-102

Search Result 121, Processing Time 0.032 seconds

Subacute Toxicity of SP-102 (Sulbactam. Piperacilline) in Rats Administered Intraperitoneally (복합항생제 SP-102(설박탐.픽페라실린)의 랫드 복강내 투여에 의한 아급성 독성)

  • 서경원;박기숙;신동환;김창옥;한형미;박인원;김효정
    • Biomolecules & Therapeutics
    • /
    • v.1 no.2
    • /
    • pp.251-261
    • /
    • 1993
  • The subacute toxicity of combined antibiotics, SP-102 (Sulbactam.Piperacilline), was examined in S.D.rats. Four groups of rats were administered intraperitoneally with 0, 512, 1280 and 3200 mg/kg/day of SP-102 for 30 days. Hain clinical sign related to the compound was soft stool. The body weight gain was slightly decreased in male rats treated with 1280, 3200 mg/kg and in female rats treated with 1280 mg/kg of SP-102. Water consumption was significantly increased in rats administered with SP-102. There were no dose-related changes of urinalysis, biochemical examination and hematological findings in all the groups treated with SP-102. Gross necropsy and histopathology revealed no evidence of specific toxicity related to SP-102. Our data indicate that no-observed effect level of SP-102 is below 512 mg/kg in male and female rats. Maximum tolerated dose of SP-102 was estimated to be above 3200 ma/kg in this study.

  • PDF

Characterization of Two Self-Sufficient Monooxygenases, CYP102A15 and CYP102A170, as Long-Chain Fatty Acid Hydroxylases

  • Rimal, Hemraj;Lee, Woo-Haeng;Kim, Ki-Hwa;Park, Hyun;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.777-784
    • /
    • 2020
  • Self-sufficient P450s, due to their fused nature, are the most effective tools for electron transfer to activate C-H bonds. They catalyze the oxygenation of fatty acids at different omega positions. Here, two new, self-sufficient cytochrome P450s, named 'CYP102A15 and CYP102A170,' from polar Bacillus sp. PAMC 25034 and Paenibacillus sp. PAMC 22724,respectively, were cloned and expressed in E. coli. The genes are homologues of CYP102A1 from Bacillus megaterium. They catalyzed the hydroxylation of both saturated and unsaturated fatty acids ranging in length from C12-C20, with a moderately diverse profile compared to other members of the CYP102A subfamily. CYP102A15 exhibited the highest activity toward linoleic acid with Km 15.3 μM, and CYP102A170 showed higher activity toward myristic acid with Km 17.4 μM. CYP10A170 also hydroxylated the Eicosapentaenoic acid at ω-1 position only. Various kinetic parameters of both monooxygenases were also determined.

pKT230 벡터를 이용한 Pseudomonas sp. P20의 2,3-Dihydroxybiphenyl Dioxygenase 유전자의 클로닝

  • Kim, Ji-Young;Kim, Chi-Kyung;Ka, Jong-Ok;Min, Kyung-Hee;Park, Yong-Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.657-663
    • /
    • 1996
  • Pseudomonas sp. P20 isolated from the polluted environment is capable of degrading biphenyl and 4-chlorobiphenyl. The pcbABCD genes responsible for degradation of biphenyl and 4-chlorobiphenyl were cloned using pBluescript SK(+) from the chromosomal DNA of Pseudomonas sp. P20 to construct pCK1 and pCK102, harbouring pcbABCD and pcbCD, respectively. The 2, 3-DHBP dioxygenase gene, pcbC, was cloned again from pCK102 by using pKT230 which is known as a shuttle vector and pKK1 hybrid plasmid was constructed. The E. coli KK1 transformant obtained by transforming the pKK1 into E. coli XL1-Blue showed 2, 3-DHBP dioxygenase activity. The specific 2, 3-DHBP dioxygenase activity of E. coli KK1 was similar to that of the E. coli CK102, but much higher than those of the natural isolates, Pseudomonas sp. DJ-12 and Pseudomonas sp. P20.

  • PDF

Isolation, Identification, and Characterization of Microorganisms which Possess the Flocculating Activity to Food Wastewater (음식물류폐수에 특이적 응집제를 생성하는 미생물의 분리, 동정 및 응집특성)

  • Chung, Myung-Hee;Chung, Doo-Young;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.125-130
    • /
    • 2007
  • Six bacteria, which showed the flocculating activity to food wastewater, were isolated from various environment. These strains were identified as Bacillus pumilus, Enterobacter sp., Pantotea agglomerans, Bacillus licheniformis, and two Bacillus sps. Among them, the flocculating activities of three strains, such as Enterobacter sp.(YK102), Bacillus sp.(YK103), and Pantotea agglomerans (YK104), were eight times or more higher than that of the control strain, Zoogloea ramigera. in the test with 0.5% kaolin. In the experiment with food wastewater, Enterobacter sp.(YK102) showed the highest flocculating activity which was 2.5 times higher than that of a control strain, Pseudomonas fluorescens.

  • PDF

Isolation and Identification of Lactic Bacteria Containing Superior Activity of the Bile Salts Deconjugation (담즙산 분해능이 뛰어난 젖산균의 분리 및 동정)

  • 하철규;조진국;채영규;허강칠
    • Food Science of Animal Resources
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • The purpose of this study is to isolate probiotic lactic acid bacteria (LAB) that produced bile salts hydrolase. One hundred twenty strains were initially isolated from human feces. Based on their resistance of acid, tolerances of bile salts, and inhibitory activity against Escherichia coli, five strains were selected. A strain producing highest activity of bile salts hydrolase was identified as Lactoacillus plantarum using API carbohydrate fermentation pattern and 16S rRNA sequences, and named CK102. Lactobacillus plantarum CK102 survived at a level of 1.36${\times}$10$\^$8/ CFU/$m\ell$ in pH 2 buffer for 6 h and showed exhibited excellent bile tolerance. When L plantarum CK102 was cultured with E. coli in MRS broth, no viable cells of E. coli was detected after 18 h fermentation. These results suggest that Lactobacillus plantarum CK 102 may be commercially used for the probiotic culture.

Cloning and Expression of pcbC and pcbD Genes Responsible for 2,3-Dihydroxybiphenyl Degradation from Pseudomonas sp. P20

  • Nam, Jung-Hyun;Oh, Hee-Mock;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.68-73
    • /
    • 1995
  • Pseudomonas sp. P20 was shown to be capable of degrading biphenyl and 4-chlorobiphenyl (4CB) to produce the corresponding benzoic acids wnich were not further degraded. But the potential of the strain for biodegradation of 4CB was shown to be excellent. The pcbA, B, C and D genes responsible for the aromatic ring-cleavage of biphenyl and 4CB degradation were cloned from the chromosomal DNA of the strain. In this study, the pebC and D genes specifying degradation of 2, 3-dihydroxybiphenyl (2, 3-DHBP) produced from biphenyl by the pebAB-encoded enzymes were cloned by using pBluescript SK(+) as a vector. From the pCK102 (9.3 kb) containing pebC and D genes, pCK1022 inserted with a EcoRI-HindIII DNA fragment (4.1 kb) carrying pebC and D and a pCK1092 inserted with EcoRI-XbaI fragment (1.95 kb) carrying pebC were constructed. The expression of pcbC and D' in E. coli CK102 and pebC in E. coli CK1092 was examined by gas chromatography and UV-vis spectrophotometry. 2.3-dihydroxybiphenyl was readily degraded to produce meta-cleavage product (MCP) by E. coli CK102 after incubation for 10 min, and then only benzoic acid(BA) was detected in the 24-h old culture. The MCP was detected in E. coli CK1022 containing pebC and 0 genes (by the resting cells assay) for up to 3 h after incubation and then diminished completely in 8 h, whereas the MCP accumulated in the E. coli CK1092 culture even after 6 h of incubation. The 2, 3-DHBP dioxygenases (product of pebC gene) produced by E. coli CK1, CK102, CK1023, and CK1092 strains were measured by native PAGE analysis to be about 250 kDa in molecular weight, which were about same as those of Pseudomonas sp. DJ-12, P. pseudoa1caligenes KF707, and P. putida OU83.

  • PDF

Optimum Conditions of Formaldehyde Degradation by the Bacterium Pseudomonas sp. YK-32 (세균 Pseudomonas sp. YK-32 균주에 의한 Formaldehyde 분해 최적조건)

  • Kim, Young-Mog;Lee, Yun-Kyoung;Kim, Kyoung-Lan;Lee, Eun-Woo;Lee, Myung-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.2
    • /
    • pp.102-106
    • /
    • 2008
  • Formaldehyde, an indoor volatile organic compound, is considered toxic due to its carcinogenic risk. Recently, we isolated a formaldehyde-degrading bacterium Pseudomonas sp. YK-32. A crude enzyme prepared from YK-32 also degraded formaldehyde, suggesting that YK-32 cells have formaldehyde hydrogenase activity which is one of the important factors in formaldehyde degradation. The formaldehyde hydrogenase activity was increased 1.25 fold by adding 0.1 % glucose and formaldehyde to the culture medium. In addition, treatment with 1 mM EDTA as a permeabilizer promoted the degradation of formaldehyde and increased the enzymatic activity.