Stated Preference (SP) data has been regarded as more useful than Revealed Preference (RP) data, because researchers can investigate the respondents\` Preference and attitude for a traffic condition or a new traffic system by using the SP data. However, the SP data has two bias: the first one is the bias inherent in SP data and the latter one is the attrition bias in SP panel data. If the biases do not corrected, the choice model using SP data may predict a erroneous future demand. In this Paper, six route choice models are constructed to deal with the SP biases, and. these six models are classified into cross-sectional models (model I∼IH) and dynamic models (model IV∼VI) From the six models. some remarkable results are obtained. The cross-sectional model that incorporate RP choice results of responders with SP cross-sectional model can correct the biases inherent in SP data, and also the dynamic models can consider the temporal variations of the effectiveness of state dependence in SP responses by assuming a simple exponential function of the state dependence. WESML method that use the estimated attrition probability is also adopted to correct the attrition bias in SP Panel data. The results can be contributed to the dynamic modeling of SP Panel data and also useful to predict more exact demand.
In recent year, especially in the mode choice analysis, it has been perceived that the importance of individual performance data using stated preference(SP) experiments as well as revealed preference data . Since SP experiments present respondent with various hypothetical alternatives, which are produced by a combination of a number of different attribute levels, and ask them to indicate a preference, it is possible to analyze travel behavior under a situation of potential environment change such as proposed alternative mode of transportation. The basic problems, however, remains that SP are not consistent with the actual travel behaviors and the research reports for stability of mode choice model using SP data has not been sufficient. Under this background, this study is to examine the characteristics of mode choice model using the SP data by the following items. $\circled1$ Analysis of factors affecting the mode choice behavior by the variance analysis of orthogonal-arrays-table $\circled2$ The reliability of SP data by transfer intention data $\circled3$ The stability of SP responses obtained from repetitive question by the comparison of model coefficient specified by each repetitive data. $\circled4$ The stability of ranking data in mode choice model For the analysis, we assumed subway operations in the Gwang-Ju , and set up a choice-set of hypothetical options based on Experimental Design Method.
SP data have been widely used in assessing new transport policies and transport related plans. However, one of criticisms of using SP is that respondents may show different reaction between hypothetical experiments and real life. In order to overcome the problem, combination of SP and RP data has been suggested and the combined methods have been being developed. The purpose of this paper is to suggest a new SP and RP combined method using error component method and to verify the method. The error component method decomposes IID extreme value error into non-IID error component(s) and an IID error component. The method estimates both of component parameters and utility parameters in order to obtain relative variance of SP data and RP data. The artificial SP and RP data was created by using simulation and used for the analysis, and the estimation results of the error component method were compared with those of existing SP and RP combined methods. The results show that regardless of data size, the parameters of the error component method models are similar to those assumed parameters much more than those of the existing SP and RP combined models, indicating usefulness of the error component method. Also the values of time for error component method are more similar to those assumed values than those of the existing combined models. Therefore, we can conclude that the error component method is useful in combining SP and RP data and more efficient than the existing methods.
Recently, United States Geological Survey (USGS) distributed Landsat 8 Collection 2 Level 2 Science Product (L2SP). This paper aims to derive land surface temperature from L2SP and to validate it. Validation is made by comparing the land surface temperature with the one calculated from Landsat 8 Collection 1 Level 1 Terrain Precision (L1TP) and the one from Automated Synoptic Observing System (ASOS). L2SP is calculated from Landsat 8 Collection 2 Level 1 data and it provides land surface temperature to users without processing surface reflectance data. Landsat 8 data from 2018 to 2020 is collected and ground sensor data from eight sites of ASOS are used to evaluate L2SP land surface temperature data. To compare ground sensor data with remotely sensed data, 3×3 grid area data near ASOS station is used. As a result of analysis with ASOS data, L2SP and L1TP land surface temperature shows Pearson correlation coefficient of 0.971 and 0.964, respectively. RMSE (Root Mean Square Error) of two results with ASOS data is 4.029℃, 5.247℃ respectively. This result suggests that L2SP data is more adequate to acquire land surface temperature than L1TP. If seasonal difference and geometric features such as slope are considered, the result would improve.
As for the travel demand analysis of the past, forcasting has been conducted by the use of revealed preference(RP) informations about actual or observed choices made by individuals. Forcasting method using RP data needs implicit assumptions that there will be no remarkable changes in existing transport conditions. However in case of occuring the great changes in existing conditions or adding a new choice-set of hypothetical options, it is very difficult to predict future travel demand. Fortunately in recent years, especially in the mode choice analysis, it has been perceived that the importance of individual performance data using stated preference(SP) experiments as well as RP data. But the research reports has not been reported sufficiently from models estimated using SP data. Under this background, we analyze the factors affecting the mode choice behavior as a fundamental study against the modelling task with SP choice data. For this analysis, we assumed subway operations in the secondary cities where there are no subway lines until now, and set up a choice-set of hypothetical options based on Experimental Design Method.
Park, Sam-Gyu;Kim, Jung-Ho;Seo, Goo-Won;Won, Jong-Geun;Kim, Byung-Ho
한국지구물리탐사학회:학술대회논문집
/
2005.05a
/
pp.71-76
/
2005
The subject of this paper is research into the application of resistivity/SP monitoring to detecting the water leakage of water utilization facilities. For this purpose, we installed a comprehensive monitoring system consisting of resistivity/SP measurement, inclinometer, piezometer, and water gauge at an embankment, Using this monitoring system, we monitored the various kinds of measurement data and compared the resistivity structures and SP variations that of hydrological and engineering data in order to investigate the water leakage and stability of the embankment. The variations of resistivity and SP at the embankment were provided from the monitoring data and we could accurately locate the portions of which resistivities and SP have sharply changed, Furthermore, we could estimate the stability of the embankment more effectively and quantitatively by jointly interpreting the monitoring data of resistivity and SP, water level, pore water pressure, and subsurface displacement. The monitoring experiments in this study led us to the conclusion that for the efficient maintenance of the water utilization facilities, monitoring the resistivity and SP data would be much more preferable to performing the just one-time measurements.
The Journal of Korean Institute of Communications and Information Sciences
/
v.17
no.10
/
pp.1164-1174
/
1992
In this paper, an Information Security protocol in LLC/MAC Layer Architecture is discussed. This paper examines the security Vulnerability and threats, the security Service required to protect these threats, and architectural considerations of security protocol in IEEE 802 LAN architecture. To provide an Information security service, an information security protocol(SP2 : Security Protocol 2) PDU construction with LLC/MAC service primitives is suggested. To construct the SP2 protocol, the ECB, CBC mode of DES algorithm and DAA(Data Authentication Algorithm) of FIPS is used. The SP2 protocol suggested in this paper provides data origin authentication, data confidentiality, data integrity service.
This study is carried out for understanding mode choice behavior of shippers and introducing ideal mode share between rail and truck in Korea. The model type is individual behavioral model and the input data type is stated preference (SP) data. SP data was prepared by design of experiments. The explanatory variables in models are transport time, transport cost and service level. The research result shows that it is more effective to reduce transport cost rather than to implement other strategies. For container, reducing transport cost and transport time and increasing service level simultaneously can strengthen the competitiveness of rail over truck transportation. On the other hand, for bulk freight such as cement and steel, it is better to reduce the transport cost than to do other attributes.
The aim of this study was to measure the hair melanins of various colors and to find the relationship between the quantity of melanins and hair color phenotypes in alpacas. According to the Munsell color system, 3 healthy alpacas were selected for each of the 22 different hair color phenotypes (66 alpacas altogether). Alpaca hair was taken from the lateral thoracic region and then dissolved with different solutions to obtain melanins. The values of alkali-soluble melanins (ASM), eumelanin (EM) and pheomelanin (PM) were measured by spectrophotometric assay, and labeled as Sp.ASM, Sp.EM and Sp.PM, respectively. Data were analyzed using SPSS11.5 software. Results showed that average Sp.ASM and Sp.PM were increased as the color deepened from white to black, ranging from 0.500 to 4.543 for Sp.ASM and from 0.268 to 1.457 for Sp.EM. However, average Sp.PM had no such apparent relationship with color. Based on the value of Sp.ASM and EM, 7 hues were produced and gray was a single hue. Most of the data were in a normal distribution (p>0.10). ANOVA analysis showed that mean values of Sp.ASM, Sp.EM and Sp.PM were significantly different (p<0.05). The results also showed that Sp.ASM was positively correlated with Sp.EM but the correlation between Sp.ASM and Sp.PM was not significantly different from 0. It is concluded that EM is the major constituent of alpaca hair melanin; there is a significant correlation among ASM, EM and alpaca hair colors, and EM is the most reliable parameter for distinguishing these groups.
In ranking data, respondents are required to rank a number of alternatives in order of their preferences and an exploded logit model is generally used. It assumes that each rank contains the same amount of random noise. This study investigates the reliability of ranking data and identifies whether there are different decision rules at each rank stage. The results show that there were differences in the amount of unexplained variation in different ranking stage. A single scaling parameter could not explain the difference of variations of individual coefficients between two ranking data average difference of variations. This paper also investigated the optimal explosion depth in the exploded logit model by using the suggested scaling approach. The scaling approach should be based on particular variables which have different variances rather than based on the whole data set. The empirical analysis show that an explosion depth of 2 is appropriate after scaling the second rank data set, while an explosion including the third rank is inappropriate even though the third rank data set is scaled.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.