• Title/Summary/Keyword: SOURCE AND SINK

Search Result 437, Processing Time 0.033 seconds

Sensitivity of rice Plant to Potassium Stress of Various Growth Stages -II Effect of potassium depression on grain yield and its relation to nutrient content (생육시기별수도(生育時期別水稻)의 가리부족(加里不足)에 대(對)한 감수성(感受性) -II 수량(收量)에 대(對)한 가리결제(加里缺除)의 영향(影響) 및 수량(收量)과 양분함량(養分含量)과의 관계(關係))

  • Park, Hoon;Mok, Sung Kyun;Kim, Sung Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.3
    • /
    • pp.163-175
    • /
    • 1974
  • Effects on yields, yield components and nutrient content of potassium depression for two or three weeks at various growth stages were investigated in rice (var. Jinheung) under sand culture system.(K 40 ppm 1973) 1. Analysis of variance showed significant difference among treatments of both two-week (at p=0.01) and three-week depression (at p=0.05) in yield. 2. Most sensitive stage to potassium depression on yield appeared two weeks until heading (42% yield decrease) and sensitivity decreased the growth stage is apart from heading either before or after. During 30 days after transplanting two-week potassium depression increased yield, but three-week depression decreased yield. Until about 30 days after heading depression caused poor yield. 3. Root potassium involves in harvest index, filled grain ratio and grain weight with significant correlation and considerably in spikelet per panicle while potassium in leaf sheath+culm involves considerably in spikelet per panicle and panicle per hill. Relative total dry matter weight was significantly correlated with panicle per hill, spikelet per panicle and K or K/Ca+Mg only in leaf sheath+culm. The indications are that root potassium contributes for building sink and efficiency of structure while potassium in leaf sheat+culm primarily for building source, productive structure. 4. Relative yield was significantly correlated with potassium content in root and leaf sheath+culm and with K/Ca+Mg and its ratio before and after depression in root indicating that potassium depression occurs greatly in root and that K/Ca+Mg might have more important role than K content alone under depression. 5. Optimum level of $K_2O$ appears around 3% in leaf blade. 4% in leaf sheath+culm and 1% in root under the assumption that below these level the same content has the same role in relation to yield during growth. The K/Ca+Mg appeares to be 2.5 in root and should not decrease throughout the growth stages. 6. The increase of sodium content in plant by K depression was highest, especially in leaf sheath during the most insensitive period to K depression suggesting that insensitivity may be attributed to partial replacement of Na for K. Partial replacement seems very little in sensitive stage (later stage) and sensitive organ (root).

  • PDF

Suggestion for Technology Development and Commercialization Strategy of CO2 Capture and Storage in Korea (한국 이산화탄소 포집 및 저장 기술개발 및 상용화 추진 전략 제안)

  • Kwon, Yi Kyun;Shinn, Young Jae
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.381-392
    • /
    • 2018
  • This study examines strategies and implementation plans for commercializing $CO_2$ capture and storage, which is an effective method to achieve the national goal of reducing greenhouse gas. In order to secure cost-efficient business model of $CO_2$ capture and storage, we propose four key strategies, including 1) urgent need to select a large-scale storage site and to estimate realistic storage capacity, 2) minimization of source-to-sink distance, 3) cost-effectiveness through technology innovation, and 4) policy implementation to secure public interest and to encourage private sector participation. Based on these strategies, the implementation plans must be designed for enabling $CO_2$ capture and storage to be commercialized until 2030. It is desirable to make those plans in which large-scale demonstration and subsequent commercial projects share a single storage site. In addition, the plans must be able to deliver step-wised targets and assessment processes to decide if the project will move to the next stage or not. The main target of stage 1 (2019 ~ 2021) is that the large-scale storage site will be selected and post-combustion capture technology will be upgraded and commercialized. The site selection, which is prerequisite to forward to the next stage, will be made through exploratory drilling and investigation for candidate sites. The commercial-scale applicability of the capture technology must be ensured at this stage. Stage 2 (2022 ~ 2025) aims design and construction of facility and infrastructure for successful large-scale demonstration (million tons of $CO_2$ per year), i.e., large-scale $CO_2$ capture, transportation, and storage. Based on the achievement of the demonstration project and the maturity of carbon market at the end of stage 2, it is necessary to decide whether to enter commercialization of $CO_2$ capture and storage. If the commercialization project is decided, it will be possible to capture and storage 4 million tons of $CO_2$ per year by the private sector in stage 3 (2026 ~ 2030). The existing facility, infrastructure, and capture plant will be upgraded and supplemented, which allows the commercialization project to be cost-effective.

Surface Exchange of Energy and Carbon Dioxide between the Atmosphere and a Farmland in Haenam, Korea (한국 해남 농경지와 대기간의 에너지와 이산화탄소의 지표 교환)

  • Hee Choon Lee;Jinkyu Hong;Chun-Ho Cho;Byoung-Cheol Choi;Sung-Nam Oh;Joon Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.61-69
    • /
    • 2003
  • Surface energy and $CO_2$ fluxes have been measured over a farmland in Haenam, Korea since July 2002. Eddy covariance technique, which is the only direct flux measurement method, was employed to quantitatively understand the interaction between the farmland ecosystem and the atmospheric boundary layer. Maintenance of eddy covariance system was the main concern during the early stage of measurement to minimize gaps and uncertainties in the dataset. Half-hourly averaged $CO_2$ concentration showed distinct diurnal and seasonal variations, which were closely related to changes in net ecosystem exchange (NEE) of $CO_2$. Daytime maximum $CO_2$ uptake was about -1.0 mg $CO_2$ m$^{-2}$ s$^{-1}$ in August whereas nighttime $CO_2$ release was up to 0.3 mg $CO_2$ m$^{-2}$ s$^{-1}$ during the summer. Both daytime $CO_2$ uptake and nighttime release decreased gradually with season. During the winter season, NEE was from near zero to 0.05 mg $CO_2$ m$^{-2}$ s$^{-1}$ . FK site was a moderate sink of atmospheric $CO_2$ until September with daily NEE of 22 g $CO_2$ m$^{-2}$ d$^{-1}$ . In October, it became a weak source of $CO_2$ with an emission rate of 2 g $CO_2$ m$^{-2}$ d$^{-1}$ . Long-term flux measurements will continue at FK site to further investigate inter-annual variability in NEE. to better understand these exchange mechanism and in-depth analysis, process-level field experiments and intensive short-term intercomparisons are also expected to be followed.

Effects of streambed geomorphology on nitrous oxide flux are influenced by carbon availability (하상 미지형에 따른 N2O 발생량 변화 효과에 대한 탄소 가용성의 영향)

  • Ko, Jongmin;Kim, Youngsun;Ji, Un;Kang, Hojeong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.917-929
    • /
    • 2019
  • Denitrification in streams is of great importance because it is essential for amelioration of water quality and accurate estimation of $N_2O$ budgets. Denitrification is a major biological source or sink of $N_2O$, an important greenhouse gas, which is a multi-step respiratory process that converts nitrate ($NO_3{^-}$) to gaseous forms of nitrogen ($N_2$ or $N_2O$). In aquatic ecosystems, the complex interactions of water flooding condition, substrate supply, hydrodynamic and biogeochemical properties modulate the extent of multi-step reactions required for $N_2O$ flux. Although water flow in streambed and residence time affect reaction output, effects of a complex interaction of hydrodynamic, geomorphology and biogeochemical controls on the magnitude of denitrification in streams are still illusive. In this work, we built a two-dimensional water flow channel and measured $N_2O$ flux from channel sediment with different bed geomorphology by using static closed chambers. Two independent experiments were conducted with identical flume and geomorphology but sediment with differences in dissolved organic carbon (DOC). The experiment flume was a circulation channel through which the effluent flows back, and the size of it was $37m{\times}1.2m{\times}1m$. Five days before the experiment began, urea fertilizer (46% N) was added to sediment with the rate of $0.5kg\;N/m^2$. A sand dune (1 m length and 0.15 m height) was made at the middle of channel to simulate variations in microtopography. In high- DOC experiment, $N_2O$ flux increases in the direction of flow, while the highest flux ($14.6{\pm}8.40{\mu}g\;N_2O-N/m^2\;hr$) was measured in the slope on the back side of the sand dune. followed by decreases afterward. In contrast, low DOC sediment did not show the geomorphological variations. We found that even though topographic variation influenced $N_2O$ flux and chemical properties, this effect is highly constrained by carbon availability.

Analysis of the Characteristics of Water Quality Difference Occurring between High Tide and Low Tide in Masan Bay (만조와 간조시 마산만 수질의 농도차 발생 특성의 분석)

  • Yoo, Youngjin;Kim, Sung Jae
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.102-113
    • /
    • 2019
  • Slack-tide sampling was carried out at 6 stations at high and low tide for a tidal cycle during spring tide of the early summer (June) and summer (July, August) of 2016 to determine the difference of water quality according to tide in Masan Bay, Korea. The mixing regime of all the water quality components investigated was well explained through the correlation with SAL. In the early summer and summer, TURB, DSi and NNN which mainly flow into the bay from the streams and SS, COD, AMN and $H_2S$ which mainly indicate the internal sink and source materials have a property of conservative mixing and non-conservative mixing, respectively. The conservative mixing showed a good linear relationship of the water quality between high and low tide, and the non-conservative mixing showed a variation of different pattern each other. Factor analysis performed on the concentration difference data sets between high and low tide helped in identifying the principal latent variables for them. In early summer, multiple effects (tidal action, natural influx and internal sinks and sources etc.) acted in combination for the differences to be distributed evenly in four factors (VF1~4), since there were few allochthonous inputs as a low-water season. On the contrary, in summer, the parameters showing large concentration difference at ST-1 affected by stream water were concentrated in one factor (VF1) and clearly distinguished from the parameters affected by the internal sinks and sources. In fact, there is no estuary (bay) that always maintains steady state flow conditions. The mixing regime of an estuary might be changed at any time due to the change of flushing time, and furthermore the change of end-member conditions due to the internal sinks and sources makes the occurrence of concentration difference inevitable. Therefore, when investigating the water quality of the estuary, it is necessary to take a sampling method considering the tide to obtain average water quality data.

On Securing Continuity of Long-Term Observational Eddy Flux Data: Field Intercomparison between Open- and Enclosed-Path Gas Analyzers (장기 관측 에디 플럭스 자료의 연속성 확보에 대하여: 개회로 및 봉폐회로 기체분석기의 야외 상호 비교)

  • Kang, Minseok;Kim, Joon;Yang, Hyunyoung;Lim, Jong-Hwan;Chun, Jung-Hwa;Moon, Minkyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.135-145
    • /
    • 2019
  • Analysis of a long cycle or a trend of time series data based on a long-term observation would require comparability between data observed in the past and the present. In the present study, we proposed an approach to ensure the compatibility among the instruments used for the long-term observation, which would allow to secure continuity of the data. An open-path gas analyzer (Model LI-7500, LI-COR, Inc., USA) has been used for eddy covariance flux measurement in the Gwangneung deciduous forest for more than 10 years. The open-path gas analyzer was replaced by an enclosed-path gas analyzer (Model EC155, Campbell Scientific, Inc., USA) in July 2015. Before completely replacing the gas analyzer, the carbon dioxide ($CO_2$) and latent heat fluxes were collected using both gas analyzers simultaneously during a five-month period from August to December in 2015. It was found that the $CO_2$ fluxes were not significantly different between the gas analyzers under the condition that the daily mean temperature was higher than $0^{\circ}C$. However, the $CO_2$ flux measured by the open-path gas analyzer was negatively biased (from positive sign, i.e., carbon source, to 0 or negative sign, i.e., carbon neutral or sink) due to the instrument surface heating under the condition that the daily mean temperature was lower than $0^{\circ}C$. Despite applying the frequency response correction associated with tube attenuation of water vapor, the latent heat flux measured by the enclosed-path gas analyzer was on average 9% smaller than that measured by the open-path gas analyzer, which resulted in >20% difference of the sums over the study period. These results indicated that application of the additional air density correction would be needed due to the instrument heat and analysis of the long-term observational flux data would be facilitated by understanding the underestimation tendency of latent heat flux measurements by an enclosed-path gas analyzer.

Mass Balance of Salts, DIP, DIN and DON in the Gomso Tidal Flat (곰소만 조간대에서 Salts, DIP, TDN의 물질 수지)

  • Jeong Yong-Hoon;Kim Yeong-Tae;Kim Ki-Hyun;Kim Soh-Young;Kim Byung-Hoon;Yang Jae-Sam
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.68-81
    • /
    • 2006
  • As one of the on-going projects to investigate the biogeochemical characteristics of tidal flat, we develop seasonal mass balance calculations (or DIP, DIN and DON in Gomso Bay. We have obtained 13-hours time-series data of salinity, tidal current, nutrients, and chlorophyll-a of seawater for spring, dry summer, rainy summer and winter during $1999{\sim}2000$. DIP of $-1.10{\times}10^6g\;P\;day^{-1},\;-4.50{\times}10^5g\;P\;day^{-1}$ was out-fluxed from the bay to the bay proper for spring and dry summer, respectively. Whereas $1.06{\times}10^4g\;P\;day^{-1}$ of net influx of DIP was found during winter and $2.72{\times}10^6g\;P\;day^{-1}$ of net influx was also found during the rainy summer. Therefore we suggest the role of Gomso tidal flat as a source of DIP fur the seasons of spring and summer, but as an opposite role during the rainy summer and winter but much smaller in magnitude. Except winter, the advection process by tidal current is found the most dominant flux among the diverse fluxes of DIP in the bay. Whereas ground water is estimated as the strongest flux of TDN except winter. TDN of $1.38{\times}10^7g\;N\;day^{-1},\;2.45{\times}10^6g\;N\;day^{-1},\;and\;4.65{\times}10^7g\;N\;day^{-1}$ was in-fluxed to the bay from the bay proper far spring, rainy summer and summer, respectively. Only $-1.70{\times}10^7g\;N\;day^{-1}$ of net out-flux was found during the winter. Therefore we suggest the role of Gomso tidal flat as a sink of TDN far the year round except winter.