• 제목/요약/키워드: SOM algorithm

검색결과 129건 처리시간 0.028초

SOM(Self-Organization Map)을 이용한 로보트 매니퓰레이터 충돌회피 경로계획 (Collision-Free Path Planning for Robot Manipulator using SOM)

  • 이종우;이종태
    • 대한산업공학회지
    • /
    • 제22권3호
    • /
    • pp.499-515
    • /
    • 1996
  • The basic function of on industrial robot system is to move objects in the workspace fast and accurately. One difficulty in performing this function is that the path of robot should be programmed to avoid the collision with obstacles, that is, tools, or facilities. This path planning requires much off-line programming time. In this study, a SOM technique to find the collision-free path of robot in real time is developed. That is, the collision-free map is obtained through SOM learning and a collision-free path is found using the map in real time during the robot operation. A learning procedure to obtain the map and an algorithm to find a short path using the map is developed and simulated. Finally, a path smoothing method to stabilize the motion of robot is suggested.

  • PDF

시계열자료의 계층분리기법을 이용한 하천유역의 홍수위 예측 (Flood Stage Forecasting using Class Segregation Method of Time Series Data)

  • 김성원
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.669-673
    • /
    • 2008
  • In this study, the new methodology which combines Kohonen self-organizing map(KSOM) neural networks model and the conventional neural networks models such as feedforward neural networks model and generalized neural networks model is introduced to forecast flood stage in Nakdong river, Republic of Korea. It is possible to train without output data in KSOM neural networks model. KSOM neural networks model is used to classify the input data before it combines with the conventional neural networks model. Four types of models such as SOM-FFNNM-BP, SOM-GRNNM-GA, FFNNM-BP, and GRNNM-GA are used to train and test performances respectively. From the statistical analysis for training and testing performances, SOM-GRNNM-GA shows the best results compared with the other models such as SOM-FFNNM-BP, FFNNM-BP, and GRNNM-GA and FFNNM-BP shows vice-versa. From this study, we can suggest the new methodology to forecast flood stage and construct flood warning system in river basin.

  • PDF

A Study of optimized clustering method based on SOM for CRM

  • Jong T. Rhee;Lee, Joon.
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.464-469
    • /
    • 2001
  • CRM(Customer Relationship Management : CRM) is an advanced marketing supporting system which analyze customers\` transaction data and classify or target customer groups to effectively increase market share and profit. Many engines were developed to implements the function and those for classification and clustering are considered core ones. In this study, an improved clustering method based on SOM(Self-Organizing Maps : SOM) is proposed. The proposed clustering method finds the optimal number of clusters so that the effectiveness of clustering is increased. It considers all the data types existing in CRM data warehouses. In particular, and adaptive algorithm where the concepts of degeneration and fusion are applied to find optimal number of clusters. The feasibility and efficiency of the proposed method are demonstrated through simulation with simplified data of customers.

  • PDF

Color Image Vector Quantization Using Enhanced SOM Algorithm

  • Kim, Kwang-Baek
    • 한국멀티미디어학회논문지
    • /
    • 제7권12호
    • /
    • pp.1737-1744
    • /
    • 2004
  • In the compression methods widely used today, the image compression by VQ is the most popular and shows a good data compression ratio. Almost all the methods by VQ use the LBG algorithm that reads the entire image several times and moves code vectors into optimal position in each step. This complexity of algorithm requires considerable amount of time to execute. To overcome this time consuming constraint, we propose an enhanced self-organizing neural network for color images. VQ is an image coding technique that shows high data compression ratio. In this study, we improved the competitive learning method by employing three methods for the generation of codebook. The results demonstrated that compression ratio by the proposed method was improved to a greater degree compared to the SOM in neural networks.

  • PDF

퍼지 추론 기법과 SOM 알고리즘을 이용한 콘크리트 슬래브 표면의 균열 추출 (Extraction of Concrete Slab Surface Cracks using Fuzzy Inference and SOM Algorithm)

  • 김광백
    • 전자공학회논문지CI
    • /
    • 제49권2호
    • /
    • pp.38-43
    • /
    • 2012
  • 콘크리트 건물의 보수 작업은 표면에 발생하는 균열을 정확하게 계측함으로써 비용적인 측면과 안전성이 결정된다. 하지만 표면에 발생한 균열은 대부분 점검자에 의해 수작업으로 계측되기 때문에 시간적 측면에서 비효율적이다. 또한 콘크리트 표면의 균열은 영상 획득 과정에서 빛이나 외부 환경에 의해 훼손되는 경우가 발생한다. 또한 콘크리트 표면이 고르지 않은 영상이나 잡음이 많이 존재하는 콘크리트 영상에서는 기존의 균열 추출 방법으로는 균열이 검출되지 않는 경우가 발생한다. 따라서 본 논문에서는 형태가 왜곡되지 않은 균열뿐만 아니라, 잡음과 유사한 미세 균열까지 효과적으로 추출하고 분석할 수 있는 방법을 제안한다. 본 논문에서 제안하는 균열 검출 방법은 콘크리트 슬래브 표면의 R, G, B 채널 값을 퍼지 기법에 적용하여 후보 균열 영역을 추출한 후, 추출한 후보 균열 영역에 SOM 기법을 적용하여 1차적으로 잡음 영역을 제거한다. 잡음이 제거된 후보 균열 영역에서 밀도 정보를 이용하여 2차적으로 세부적인 잡음 영역을 제거하여 최종적으로 균열 영역을 검출한다. 실제 콘크리트 균열 영상을 대상으로 실험한 결과, 다양한 콘크리트 균열 영상에서 기존의 균열 추출 방법보다 균열 검출 성능이 개선되었음을 확인하였다.

유해화학물질의 시각적 안전관리를 위한 MSDS 지도 개발 (Development of MSDS Map for Visual Safety Management of Hazardous and Chemical Materials)

  • 신명우;서용윤
    • 한국안전학회지
    • /
    • 제34권2호
    • /
    • pp.48-55
    • /
    • 2019
  • For preventing the accidents generated from the chemical materials, thus far, MSDS (Material Safety Data Sheet) data have been made to notify how to use and manage the hazardous and chemical materials in safety. However, it is difficult for users who handle these materials to understand the MSDS data because they are only listed based on the alphabetical order, not based on the specific factors such as similarity of characteristics. It is limited in representing the types of chemical materials with respect to their characteristics. Thus, in this study, a lots of MSDS data are visualized based on relationships of the characteristics among the chemical materials for supporting safety managers. For this, we used the textmining algorithm which extracts text keywords contained in documents and the Self-Organizing Map (SOM) algorithm which visually addresses textual data information. In the case of Occupational Safety and Health Administration (OSHA) in the United States, the guide texts contained in MSDS documents, which include use information such as reactivity and potential risks of materials, are gathered as the target data. First, using the textmining algorithm, the information of chemicals is extracted from these guide texts. Next, the MSDS map is developed using SOM in terms of similarity of text information of chemical materials. The MSDS map is helpful for effectively classifying chemical materials by mapping prohibited and hazardous substances on the developed the SOM map. As a result, using the MSDS map, it is easy for safety managers to detect prohibited and hazardous substances with respect to the Industrial Safety and Health Act standards.

SOM에 강우-유출 예측모형 개발에 관한 연구 (Development of Rainfall-Runoff Prediction Model for Self Organizing Map)

  • 김용구;진영훈;이한민;박성천
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.301-306
    • /
    • 2006
  • 본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA) 이론을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저..갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 선행 유출량의 지속성을 갖는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 도입하여 예측모형의 전처리 과정으로 이용하였다. 이는 기존의 인공신경망 모형이 하나의 모형을 구성하여 유출량의 전 범위에 해당하는 자료를 예측하는 방법을 개선한 것으로 SOM에 의해 패턴이 분류된 강우-유출관계의 각 패턴별 예측모형을 통해 분류된 자료들의 예측을 수행하는 방법이다. 이와 같이 SOM을 강우-유출예측모형의 전처리과정으로 이용함으로서 기존의 인공신경망 연구에서 야기된 현상들을 해결할 수 있었고, 예측력 또한 기존의 인공신경망 모형의 결과에 비해 우수하였다.

  • PDF

Self-Organizing Map for Blind Channel Equalization

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • 제8권6호
    • /
    • pp.609-617
    • /
    • 2010
  • This paper is concerned with the use of a selforganizing map (SOM) to estimate the desired channel states of an unknown digital communication channel for blind equalization. The modification of SOM is accomplished by using the Bayesian likelihood fitness function and the relation between the desired channel states and channel output states. At the end of each clustering epoch, a set of estimated clusters for an unknown channel is chosen as a set of pre-defined desired channel states, and used to extract the channel output states. Next, all of the possible desired channel states are constructed by considering the combinations of extracted channel output states, and a set of the desired states characterized by the maximal value of the Bayesian fitness is subsequently selected for the next SOM clustering epoch. This modification of SOM makes it possible to search the optimal desired channel states of an unknown channel. In simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The performance of the proposed method is compared with those of the "conventional" SOM and an existing hybrid genetic algorithm. Relatively high accuracy and fast search speed have been achieved by using the proposed method.

Forward C-P. Net.을 이용한 3단 LVQ 학습알고리즘 (3 Steps LVQ Learning Algorithm using Forward C.P. Net.)

  • 이용구;최우승
    • 한국컴퓨터정보학회논문지
    • /
    • 제9권4호
    • /
    • pp.33-39
    • /
    • 2004
  • 본 논문에서는 LVQ 네트워크의 분류성능을 향상시키기 위하여 F.C.P. Net.을 이용하여 LVQ 학습알고리즘을 설계하였다. F.C.P. Net.의 입력층과 부류층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였다. 마지막으로 패턴벡터를 부류층의 뉴런에 의해 종속부류로 분류하고, F.C.P. Net.의 부류층과 출력층 사이의 연결강도는 분류된 종속부류를 부류로 지정하는 학습을 하게 된다. 또한 부류의 수가 결정되기만 하면 입력층, 부류층, 출력층의 뉴런의 수를 결정 할 수 있도록 하였다. 제안된 학습알고리즘의 성능을 검증하기 위하여 Fisher의 Iris 데이터를 학습벡터 및 시험 벡터로 사용하여 시뮬레이션 하였고, 제안된 학습방식의 분류 성능은 기존의 LVQ와 비교되어 기존의 학습방식보다 우수한 분류성공률을 확인하였다.

  • PDF

자기조직화지도를 이용한 사례기반추론 (Case-Based Reasoning Using Self-Organization Map)

  • Kim, Yong-Su;Yang, Bo-Suk
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.382.1-382
    • /
    • 2002
  • This paper presents a new approach integrated Case-Based Reasoning with Self- Organization Map(SOM) in diagnosis systems. The causes of faults are obtained by case-base trained from SOM. When the vibration problem of rotating machinery occurs, this provides an exact diagnosis method that shows the fault cause of vibration problem. In order to verify the performance of algorithm, we applied it to diagnose the fault cause of the electric motor.

  • PDF