• Title/Summary/Keyword: SOM algorithm

Search Result 129, Processing Time 0.02 seconds

Semantic Mapping of Terms Based on Their Ontological Definitions and Similarities (온톨로지 기반의 용어 정의 비교 및 유사도를 고려한 의미 매핑)

  • Jung W.C.;Lee J.H.;Suh H.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.211-222
    • /
    • 2006
  • In collaborative environment, it is necessary that the participants in collaboration should share the same understanding about the semantics of terms. For example, they should know that 'COMPONENT' and 'ITEM' are different word-expressions for the same meaning. In order to handle such problems in information sharing, an information system needs to automatically recognize that the terms have the same semantics. So we develop an algorithm mapping two terms based on their ontological definitions and their similarities. The proposed algorithm consists of four steps: the character matching, the inferencing, the definition comparing and the similarity checking. In the similarity checking step, we consider relation similarity and hierarchical similarity. The algorithm is very primitive, but it shows the possibility of semi-automatic mapping using ontology. In addition, we design a mapping procedure for a mapping system, called SOM (semantic ontology mapper).

A Study on Optimal Layout of Two-Dimensional Rectangular Shapes Using Neural Network (신경회로망을 이용한 직사각형의 최적배치에 관한 연구)

  • 한국찬;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3063-3072
    • /
    • 1993
  • The layout is an important and difficult problem in industrial applications like sheet metal manufacturing, garment making, circuit layout, plant layout, and land development. The module layout problem is known to be non-deterministic polynomial time complete(NP-complete). To efficiently find an optimal layout from a large number of candidate layout configuration a heuristic algorithm could be used. In recent years, a number of researchers have investigated the combinatorial optimization problems by using neural network principles such as traveling salesman problem, placement and routing in circuit design. This paper describes the application of Self-organizing Feature Maps(SOM) of the Kohonen network and Simulated Annealing Algorithm(SAA) to the layout problem of the two-dimensional rectangular shapes.

Semantic Correspondence of Database Schema from Heterogeneous Databases using Self-Organizing Map

  • Dumlao, Menchita F.;Oh, Byung-Joo
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.217-224
    • /
    • 2008
  • This paper provides a framework for semantic correspondence of heterogeneous databases using self- organizing map. It solves the problem of overlapping between different databases due to their different schemas. Clustering technique using self-organizing maps (SOM) is tested and evaluated to assess its performance when using different kinds of data. Preprocessing of database is performed prior to clustering using edit distance algorithm, principal component analysis (PCA), and normalization function to identify the features necessary for clustering.

  • PDF

R Wave Detection Considering Complexity and Arrhythmia Classification based on Binary Coding in Healthcare Environments (헬스케어 환경에서 복잡도를 고려한 R파 검출과 이진 부호화 기반의 부정맥 분류방법)

  • Cho, Iksung;Yoon, Jungoh
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.33-40
    • /
    • 2016
  • Previous works for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods require accurate detection of ECG signal, higher computational cost and larger processing time. But it is difficult to analyze the ECG signal because of various noise types. Also in the healthcare system based IOT that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose R wave detection considering complexity and arrhythmia classification based on binary coding. For this purpose, we detected R wave through SOM and then RR interval from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. R wave detection and PVC, PAC, Normal classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.41%, 97.18%, 94.14%, 99.83% in R wave, PVC, PAC, Normal.

A New Approach for Hierarchical Dividing to Passenger Nodes in Passenger Dedicated Line

  • Zhao, Chanchan;Liu, Feng;Hai, Xiaowei
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.694-708
    • /
    • 2018
  • China possesses a passenger dedicated line system of large scale, passenger flow intensity with uneven distribution, and passenger nodes with complicated relations. Consequently, the significance of passenger nodes shall be considered and the dissimilarity of passenger nodes shall be analyzed in compiling passenger train operation and conducting transportation allocation. For this purpose, the passenger nodes need to be hierarchically divided. Targeting at problems such as hierarchical dividing process vulnerable to subjective factors and local optimum in the current research, we propose a clustering approach based on self-organizing map (SOM) and k-means, and then, harnessing the new approach, hierarchical dividing of passenger dedicated line passenger nodes is effectuated. Specifically, objective passenger nodes parameters are selected and SOM is used to give a preliminary passenger nodes clustering firstly; secondly, Davies-Bouldin index is used to determine the number of clusters of the passenger nodes; and thirdly, k-means is used to conduct accurate clustering, thus getting the hierarchical dividing of passenger nodes. Through example analysis, the feasibility and rationality of the algorithm was proved.

Neural network based tool path planning for complex pocket machining (신경회로망 방식에 의한 복잡한 포켓형상의 황삭경로 생성)

  • Shin, Yang-Soo;Suh, Suk-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.32-45
    • /
    • 1995
  • In this paper, we present a new method to tool path planning problem for rough cut of pocket milling operations. The key idea is to formulate the tool path problem into a TSP (Travelling Salesman Problem) so that the powerful neural network approach can be effectively applied. Specifically, our method is composed of three procedures: a) discretization of the pocket area into a finite number of tool points, b) neural network approach (called SOM-Self Organizing Map) for path finding, and c) postprocessing for path smoothing and feedrate adjustment. By the neural network procedure, an efficient tool path (in the sense of path length and tool retraction) can be robustly obtained for any arbitrary shaped pockets with many islands. In the postprocessing, a) the detailed shape of the path is fine tuned by eliminating sharp corners of the path segments, and b) any cross-overs between the path segments and islands. With the determined tool path, the feedrate adjustment is finally performed for legitimate motion without requiring excessive cutting forces. The validity and powerfulness of the algorithm is demonstrated through various computer simulations and real machining.

  • PDF

A Implementation of Optimal Multiple Classification System using Data Mining for Genome Analysis

  • Jeong, Yu-Jeong;Choi, Gwang-Mi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.43-48
    • /
    • 2018
  • In this paper, more efficient classification result could be obtained by applying the combination of the Hidden Markov Model and SVM Model to HMSV algorithm gene expression data which simulated the stochastic flow of gene data and clustering it. In this paper, we verified the HMSV algorithm that combines independently learned algorithms. To prove that this paper is superior to other papers, we tested the sensitivity and specificity of the most commonly used classification criteria. As a result, the K-means is 71% and the SOM is 68%. The proposed HMSV algorithm is 85%. These results are stable and high. It can be seen that this is better classified than using a general classification algorithm. The algorithm proposed in this paper is a stochastic modeling of the generation process of the characteristics included in the signal, and a good recognition rate can be obtained with a small amount of calculation, so it will be useful to study the relationship with diseases by showing fast and effective performance improvement with an algorithm that clusters nodes by simulating the stochastic flow of Gene Data through data mining of BigData.

Content-based Image Retrieval Using Data Fusion Strategy (데이터 융합을 이용한 내용기반 이미지 검색에 관한 연구)

  • Paik, Woo-Jin;Jung, Sun-Eun;Kim, Gi-Young;Ahn, Eui-Gun;Shin, Moon-Sun
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.2
    • /
    • pp.49-68
    • /
    • 2008
  • In many information retrieval experiments, the data fusion techniques have been used to achieve higher effectiveness in comparison to the single evidence-based retrieval. However, there had not been many image retrieval studies using the data fusion techniques especially in combining retrieval results based on multiple retrieval methods. In this paper, we describe how the image retrieval effectiveness can be improved by combining two sets of the retrieval results using the Sobel operator-based edge detection and the Self Organizing Map(SOM) algorithms. We used the clip art images from a commercial collection to develop a test data set. The main advantage of using this type of the data set was the clear cut relevance judgment, which did not require any human intervention.

An Empirical Comparison Study on Attack Detection Mechanisms Using Data Mining (데이터 마이닝을 이용한 공격 탐지 메커니즘의 실험적 비교 연구)

  • Kim, Mi-Hui;Oh, Ha-Young;Chae, Ki-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.208-218
    • /
    • 2006
  • In this paper, we introduce the creation methods of attack detection model using data mining technologies that can classify the latest attack types, and can detect the modification of existing attacks as well as the novel attacks. Also, we evaluate comparatively these attack detection models in the view of detection accuracy and detection time. As the important factors for creating detection models, there are data, attribute, and detection algorithm. Thus, we used NetFlow data gathered at the real network, and KDD Cup 1999 data for the experiment in large quantities. And for attribute selection, we used a heuristic method and a theoretical method using decision tree algorithm. We evaluate comparatively detection models using a single supervised/unsupervised data mining approach and a combined supervised data mining approach. As a result, although a combined supervised data mining approach required more modeling time, it had better detection rate. All models using data mining techniques could detect the attacks within 1 second, thus these approaches could prove the real-time detection. Also, our experimental results for anomaly detection showed that our approaches provided the detection possibility for novel attack, and especially SOM model provided the additional information about existing attack that is similar to novel attack.

Digital Watermarking Technique using self-similarity (자기유사성을 이용한 디지털 워터마킹 기법)

  • Lee, Mun-Hee;Lee, Young-hee
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.4
    • /
    • pp.37-47
    • /
    • 2003
  • In this paper. we propose a new digital watermarking technique which uses the self-similarity of OCT(Discrete Cosine Transform) coefficients for the ownership protection of an image, similar coefficients are classified by SOM(Self-Organizing Map) out of Neural Network. The watermark is inserted into the selected cluster among clusters which consist of coefficients. Generally, the inserted watermark in high frequency regions of an image is eliminated by the compression process such as JPEG compressions, and the inserted watermark in low frequency regions of an image causes the distortion of an image quality. Therefore, the watermark is inserted into the cluster that has many coefficients in the middle frequency regions. This algorithm reduces the distortion of an image quality because of inserting the watermark into an image according to the number of coefficients in selected cluster. To extract watermarks from the watermarked image, the selected cluster is used without an original image. In the experiment, the new proposed algorithm have a good quality and endure attacks(JPEG compressions, filtering. zoom in, zoom out, cropping, noises) very well.

  • PDF