• Title/Summary/Keyword: SOLAR cell

Search Result 3,156, Processing Time 0.031 seconds

Characterization of Films Sputtered with the Cu-Ga Target Prepared by the Cold Spray Process (저온분사법에 의해 제조된 Cu-Ga 타겟의 스퍼터링 특성평가)

  • Cho, Youngji;Yoo, Jung Ho;Yang, Jun-Mo;Park, Dong-Yong;Kim, Jong-Kyun;Choi, Gang-Bo;Chang, Jiho
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • The microstructural properties and electrical characteristics of sputtering films deposited with a Cu-Ga target are analyzed. The Cu-Ga target is prepared using the cold spray process and shows generally uniform composition distributions, as suggested by secondary ion mass spectrometer (SIMS) data. Characteristics of the sputtered Cu-Ga films are investigated at three positions (top, center and bottom) of the Cu-Ga target by X-ray diffraction (XRD), SIMS, 4-point probe and transmission electron microscopy (TEM) analysis methods. The results show that the Cu-Ga films are composed of hexagonal and unknown phases, and they have similar distributions of composition and resistivity at the top, center, and bottom regions of the Cu-Ga target. It demonstrates that these films have uniform properties regardless of the position on the Cu-Ga target. In conclusion, the cold spray process is expected to be a useful method for preparing sputter targets.

Design of a Stabilized Milling Machine for the Improved Precision Machining (가공정도 향상을 위한 Milling Machine의 안정화 설계)

  • Ro, Seung-Hoon;Lee, Min-Su;Park, Keun-Woo;Kang, Hee-Tae;Lee, Jong-Hyung;Yang, Seong-Hyeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.2
    • /
    • pp.45-52
    • /
    • 2011
  • Since the most exclusive machines of the modern industries which require the nano precision rates are evolved from the machine tools, the design of the stable machine tool structure is very critical. Exclusive machines for the modern industries such as semiconductor, solar cell and LED have surface machining processes which are similar to the face cutting and grinding of conventional machine tools. This study was initiated to stabilize a milling machine structure and further to help design those exclusive machines which have similar machining mechanisms. The vibrations inherent to the machine tool structures hurt the precision machining as well as damage the longevity of the structures. There have been numerous researches in order to suppress the vibrations of machine tool structures using the extra modules such as actuators and dampers. In this paper, the dynamic properties are analyzed to obtain the natural frequencies and mode shapes of a machine tool structure which reflect the main reasons of the biggest vibrations under the given operating conditions. And the feasibility of improving the stability of the structure without using any additional apparatus has been investigated with minor design changes. The result of the study shows that simple changes based on proper system identification can considerably improve the stability of the machine tool structure.

Influence of Deposition Pressure on Structural and Optical Properties of SnS Thin Films Grown by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 성장 된 SnS 박막의 구조적 및 광학적 특성에 대한 증착 압력의 영향)

  • Son, Seung-Ik;Lee, Sang Woon;Son, Chang Sik;Hwang, Donghyun
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2020
  • Single-phased SnS thin films have been prepared by RF magnetron sputtering at various deposition pressures. The effect of deposition pressure on the structural and optical properties of polycrystalline SnS thin films was studied using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometer. The XRD analysis revealed the orthorhombic structure of the SnS thin films oriented along the (111) plane direction. As the deposition pressure was increased from 5 mTorr to 15 mTorr, the intensity of the peak on the (111) plane increased, and the intensity decreased under the condition of 20 mTorr. The binding energy difference at the Sn 3d5/2 and S 2p3/2 core levels was about 324.5 eV, indicating that the SnS thin film was prepared as a pure Sn-S phase. The optical properties of the SnS thin films indicate the presence of direct allowed transitions with corresponding energy band gap in the rang 1.47-1.57 eV.

A New Moving Mobile Base Station (MMBS) Scheme for Low Power RMIMS Wireless System (PARTI: MMBS general issues, clystering and signalling Procedures) (저전력 RMIMS 무선 터미널을 위한 새로운 움직이는 이동 기지국 시스템 구조 (1부 : MMBS 일반사항, 클러스터링 및 신호절차))

  • 박수열;고윤호;유상조;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2298-2319
    • /
    • 1999
  • In this paper, we propose a new moving mobile base station (MMBS) scheme for very low power and micro-size RMIMS (radio-interfaced micro information monitoring system) terminals. RMIMS terminals can be used in various application service areas such as pollution monitoring, environment surveillance, traffic monitoring, emergency monitoring (e.g., building, bridge, railroad breakdown), security monitoring (e.g., theft, alarm) and military application. For these applications based on wireless transmission technologies, sensor type RMIMS terminals must satisfy low cost and low power design (e.g., solar power, life limited battery) requirement. In RMIMS terminal design, this low power requirement limits transmission range of uplink or reverse link and means small cell size. Also these applications using RMIMS terminals may have a little bit non real-time traffic characteristic and low scattering density in service area.

  • PDF

A Study on Ocean Cultural Space developed on the Jejudo Manned Lighthouse (제주도 유인등대를 활용한 해양문화공간에 관한 연구)

  • Ahn, Woong-Hee;Kim, Hyoung-Jun;Han, Chang-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.21-29
    • /
    • 2005
  • The year 2003 is the centennial of the birth of the modern lighthouse in Korea. The lighthouse was originally surrounded by a beautiful nature and it contains the romantic sensitivity which relates with the ocean. And in some case it is a environment-friendly architectural facility which uses a alternative energy like a solar cell. Now the properly developed manned lighthouse is not only functioning as a traditional aids to navigation for the vessel, but also it becomes the new facility and space for all civilians who might visit and experience. Jeju regional maritime affairs & fisheries office has developed the manned lighthouses properly to ocean cultural space for the past several years. As a result of that, the recognition regarded on ocean culture was raised and the regional tourism was vitalized. For this situation we intended to reveal in this study that all the issues which relate to the proper use of the manned lighthouse in the Jejudo, since the project of water-familiar space started by MOMAF.

  • PDF

A Novel Spiral Type MEMS Power Generator with Shear Mode Piezoelectric Thick Film (압전 후막의 전단 변형을 이용한 나선형 MEMS 발전기)

  • Song, Hyun-Cheol;Kim, Sang-Jong;Moon, Hi-Gyu;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.219-219
    • /
    • 2008
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for ubiquitous sensor networks (USN). There are several power generating methods such as thermal gradients, solar cell, energy produced by human action, mechanical vibration energy, and so on. Most of all, mechanical vibration is easily accessible and has no limitation of weather and environment of outdoor or indoor. In particular, the piezoelectric energy harvesting from ambient vibration sources has attracted attention because it has a relative high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system hassome drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure. In this case, the energy harvester has a lower natural frequency under 200 Hz than a normal cantilever structure. Moreover, it has higher an energy conversion efficient because shear mode ($d_{15}$) is much larger than 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate as a standalone power generator for USN.

  • PDF

Photovoltaic Generation System Control Using Space Vector PWM Method (공간벡터 PWM 방식을 이용한 태양광 발전 시스템 제어)

  • Cho, Moon-Taek;Choi, Hae-Gill;Lee, Chung-Sik;Baek, Jong-Mu
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.3
    • /
    • pp.31-37
    • /
    • 2010
  • In this paper, a photovoltaic system is designed with PWM(Pulse Width Modulation) voltage source inverter. Proposed synchronous signal and control signal was processed by 56F8323 microprocessor for stable modulation. The PWM voltage source inverter using inverter consists of complex type of electric power converter to compensate for the defect, that is solar cell cannot be developed continuously by connecting with the source of electric power for ordinary use. It can cause the effect of saving electric power, from 10 to 20[%]. The PWM voltage source inverter operates in situation that its output voltage is in same phase with the utility voltage. In addition, I connected extra power to the system through operation the system voltage and inverter power in a synchronized way by extracting the system voltage so that the phase of the system and PWM voltage inverter can be synchronized. In the system of this research showed good results after being controlled in order to provide stable power to the load and the system through maintaining and low output power of harmonics.

Forward Gene Mutation Assay of Seven Benzophenone-type UV Filters using L5178Y Mouse Lymphoma Cell

  • Jeon, Hee-Kyung;Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The effects of high energy short wave solar radiation on human skin have received much publicity as the major cause of accelerated skin ageing and of skin cancers. To meet public demand, the cosmetic industry has developed sun protection factor products, which contain a variety of so-called "UV filters", among others benzophenone (BP) and its metabolites are the widely used UV filters. UV filters are also used to prevent UV light from damaging scents and colors in a variety of cosmetics products and to protect of plastic products against light-induced degradation. There are many variants of BP in use. In this respect, to regulate and to evaluate the hazardous effect of BP-type UV filters will be important to environment and human health. The genotoxicity of 7 BP-type UV filters was evaluated in L5178Y $(tk^{+/-})$ mouse lymphoma cells in vitro. BP, benzhydrol, 4-hydroxybenzophenone 2-hydroxy-4-methoxybenzophenone and 2, 4-dihydroxybenzophenone did not induce significant mutation frequencies both in the presence and absence of metabolic activation system. 2, 2'-Dihydroxy-4-methoxybenzophenone appeared the positive results at the highest dose, i.e. 120.4 ${\mu}g/mL$ only in the absence of metabolic activation system. And also, 2, 3, 4-trihydroxybenzophenone revealed a significant increase of mutation frequencies in the range of 138.1-207.2 ${\mu}g/mL$ in the absence of metabolic activation system and 118.3-354.8 ${\mu}g/mL$ in the presence of metabolic activation system. Through the results of MLA with 7 BP-type UV filters in L5178Y cells in vitro, we may provide the important clues on the genotoxic potentials of these BP-type UV filters.

Syntheses of Cu2SnSe3 and Their Transformation into Cu2ZnSnSe4 Nanoparticles with Tunable Band Gap under Multibubble Sonoluminescence Conditions

  • Park, Jongpil;Lee, Won Young;Hwang, Cha Hwan;Kim, Hanggeun;Kim, Youngkwon;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2331-2334
    • /
    • 2014
  • $Cu_2SnSe_3$ (CTSe) and $Cu_2ZnSnSe_4$ (CZTSe) nanoparticles were synthesized by sonochemical reactions under multibubble sonoluminescence (MBSL) conditions. First, $Cu_2SnSe_3$ nanoparticles were synthesized by the sonochemical method with an 85% yield, using CuCl, $SnCl_2$, and Se. Second, ZnSe was coated on the CTSe nanoparticles by the same method. Then, they were transformed into CZTSe nanoparticles of 5-7 nm diameters by heating them at $500^{\circ}C$ for 1 h. The ratios between Zn and Sn could be controlled from 1 to 3.75 by adjusting the relative concentrations of CTSe and ZnSe. With relatively lower Zn:Sn ratios (0.75-1.26), there are mostly CZTSe nanoparticles but they are believed to include very small amount of CTS and ZnSe particles. The prepared nanoparticles show different band gaps from 1.36 to 1.47 eV depending on the Zn/Sn ratios. In this sonochemical method without using any toxic or high temperature solvents, the specific stoichiometric element Zn/Sn ratios in CZTSe were controllable on demand and their experimental results were always reproducible in separate syntheses. The CZTSe nanoparticles were investigated by using X-ray diffractometer, a UV-Vis spectrophotometer, scanning electron microscope, Raman spectroscopy, and a high resolution-transmission electron microscope.

The Syntheses of Phthalocyanine Hybrid Derivatives and Their Properties (프탈로시아닌계 하이브리드 유도체들의 합성 및 이의 특성에 관한 연구)

  • Kim, Seong Jin;An, Ba Ryong;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.266-273
    • /
    • 2013
  • Phthalocyanine (Pc), porphyrin, subphthalocyanine, and perylene compounds can be applicable to the fields of optical storage media, organic solar cell, LCD, PDP, semiconductor, and counterfeit money detection etc. In this study, phthalocyanine hybrid derivatives were synthesized by cross-linking perylene, subphthalocyanine, or porphyrin to the main frame of Pc. Absorbtion band of two different wavelengths appeared simultaneously in the phthalocyanine hybrid derivatives. Compared to phthalocyanine, the solubility was enhanced and the degree of Q-band shift was changed according to the kind of substitute compounds. The chemical and optical properties of samples were analyzed using FT-IR, $^1H-NMR$, and UV-Vis spectroscopic techniques.