• Title/Summary/Keyword: SOLAR cell

Search Result 3,159, Processing Time 0.029 seconds

The Detection of Heat Emission to Solar Cell using UAV-based Thermal Infrared Sensor (UAV 기반 열적외선 센서를 이용한 태양광 셀의 발열 검출)

  • Lee, Geun Sang;Lee, Jong Jo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.71-78
    • /
    • 2017
  • Many studies have been implemented to manage solar plant being supplied widely in recent years. This study analyzed heat emission of solar cell using unmanned aerial vehicle(UAV)-based thermal infrared sensor, and major conclusions are as belows. Firstly, orthomosaic image and digital surface model(DSM) data were acquired using UAV-based RGB sensor, and solar light module layer necessary to analyze the heat emission of solar cell was constructed by these data. Also as a result of horizontal error into validation points using virtual reference service(VRS) survey for evaluating the location accuracy of solar light module layer, higher location accuracy could be acquired like standard error of $dx={\pm}2.4cm$ and $dy={\pm}3.2cm$. And this study installed rubber patch to test the heat emission of solar cell and could analyzed efficiently the location of rubber patch being emitted heat using UAV-based thermal infrared sensor. Also standard error showd as ${\pm}3.5%$ in analysis between calculated cell ratio by rubber patch and analyzed cell ratio by UAV-based thermal infrared sensor. Therefore, it could be efficiently analyzed to heat emission of solar cell using UAV-based thermal infrared sensor. Also efficient maintenance of solar plant could be possible through extracting the code of solar light module being emitted of heat automatically.

Voltage Equalizing of Solar Modules for Shadowing Compensation

  • Jou, Hurng-Liahng;Wu, Kuen-Der;Wu, Jinn-Chang;Chung, Cheng-Huan;Huang, Ding-Feng
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.514-521
    • /
    • 2017
  • This paper proposes a shadowing compensation method for the solar modules of grid-connected photovoltaic generation systems. The shadowing compensator (SC) implemented by the proposed shadowing compensation method is used only for the solar modules that can be shaded by predictable sources of shading. The proposed SC can simplify both the power circuit and the control circuit as well as improve power efficiency and utilizes a voltage equalizer configured by a modified multi-winding fly-back converter. The proposed SC harvests energy from the entire solar cell array to compensate for the shaded sub-modules of the solar cell array, producing near-identical voltages of all shaded and un-shaded sub-modules in the solar cell array. This setup prevents the formation of multiple peaks in the P-V curve under shaded conditions. Hardware prototypes are developed for the SCs implemented by the conventional and modified multi-winding fly-back converters, and their performance is verified through testing. The experimental results show that both SCs can overcome the multiple peaks in the P-V curve. The proposed SC is superior to the SC implemented by the conventional multi-winding fly-back converter.

A Study on Probabilistic Reliability Evaluation of Power System Considering Solar Cell Generators (태양광발전원(太陽光發電原)을 고려한 전력계통(電力系統)의 확률논적(確率論的)인 신뢰도(信賴度) 평가(評價)에 관한 연구(硏究))

  • Park, Jeong-Je;Liang, Wu;Choi, Jae-Seok;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.486-495
    • /
    • 2009
  • This paper proposes a new methodology on reliability evaluation of a power system including solar cell generators (SCG). The SCGs using renewable energy resource such as solar radiation(SR) should be modeled as multi-state operational model because the uncertainty of the resource supply may occur an effect as same as the forced outage of generator in viewpoint of adequacy reliability of system. While a two-state model is well suited for modeling conventional generators, a multi-state model is needed to model the SCGs due to the random variation of solar radiation. This makes the method of calculating reliability evaluation indices of the SCG different from the conventional generator. After identifying the typical pattern of the SR probability distribution function(pdf) from SR actual data, this paper describes modelling, methodology and details process for reliability evaluation of the solar cell generators integrated with power system. Two test results indicate the viability of the proposed method.

Optimization of the Phosphorus Doped BSF Doping Profile and Formation Method for N-type Bifacial Solar Cells

  • Cui, Jian;Ahn, Shihyun;Balaji, Nagarajan;Park, Cheolmin;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.31-41
    • /
    • 2016
  • n-type PERT (passivated emitter, rear totally diffused) bifacial solar cells with boron and phosphorus diffusion as p+ emitter and n+ BSF (back surface field) have attracted significant research interest recently. In this work, the influences of wafer thickness, bulk lifetime, emitter, BSF on the photovoltaic characteristics of solar cells are discussed. The performance of the solar cell is determined by using one-dimensional solar cell simulation software PC1D. The simulation results show that the key role of the BSF is to decrease the surface doping concentration reducing the recombination and thus, increasing the cell efficiency. A lightly phosphorus doped BSF (LD BSF) was experimentally optimized to get low surface dopant concentration for n type bifacial solar cells. Pre-oxidation combined with a multi-plateau drive-in, using limited source diffusion was carried out before pre-deposition. It could reduce the surface dopant concentration with minimal impact on the sheet resistance.

Relation Between Wire Sawing-damage and Characteristics of Single Crystalline Silicon Solar-cells (와이어 소잉 데미지 층이 단결정 실리콘 태양전지 셀 특성에 미치는 영향)

  • Kim, Il-Hwan;Park, Jun-Seong;Park, Jea-Gun
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.27-30
    • /
    • 2018
  • The dependency of the electrical characteristics of silicon solar-cells on the depth of damaged layer induced by wire-sawing process was investigated. To compare cell efficiency with residual sawing damage, silicon solar-cells were fabricated by using as-sawn wafers having different depth of saw damage without any damaged etching process. The damaged layer induced by wire-sawing process in silicon bulk intensely influenced the value of fill factor on solar cells, degrading fill factor to 57.20%. In addition, the photovoltaic characteristics of solar cells applying texturing process shows that although the initial depth of saw-damage induced by wire-sawing process was different, the value of short-circuit current, fill-factor, and power-conversion-efficiency have an almost same, showing ~17.4% of cell efficiency. It indicated that the degradation of solar-cell efficiency induced by wire-sawing process could be prevented by eliminating all damaged layer through sufficient pyramid-surface texturing process.

The modeling of electrical characteristics with crack pattern in crystalline solar cell (결정질 태양전지 crack 패턴에 따른 전기적 특성 모델링)

  • Song, Young-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.239-244
    • /
    • 2011
  • In this paper, we analyzed the electrical characteristics with crack pattern in crystalline solar cell. crystalline solar cells with a thin substrate, even small shocks can be easily damaged. Before the module goes through many processes, because the solar cells are at risk of a crack. That occurred early in the PV module micro-crack is not easily detection by eye test or output test. Because the EL (Electroluminescence) device has been detected using. PV module is made by laminated of a variety of materials. By different properties of each material will affect the crack. For this reason, the crack will grow and affect the output. And We analyzed the three crack patterns in crystalline solar cell. A growth of cracks on crystalline solar cell was interpreted by analysing generated cracks on the PV modules. Based on this interpretation, an electrical output value was calculated by mathematical modeling on electrical output characteristic with each crack patterns.

  • PDF

A Study for reduction of the power loss of PV modules (PV moudule의 출력손실 저감요인 분석)

  • Lee, Sang-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.45-50
    • /
    • 2011
  • The efficiency of solar cell was about 4[%] in initial stage of photovoltaic industry, but it has quite a lot of efficiency through technology advances. Today, the efficiency of c-Si solar cells is about 17 to 19[%] and the efficiency of PV modules is about 14 to 15 [%]. We called that electrical losses occurred in the Conversion of solar cells to PV modules are CTM loss(Cell To Module loss), the CTM loss typically has a value of about3~5[%]. The more efficiency of solar cell increase, differences are larger because the efficiency decrease owing to physical or technical problems occurred in the Conversion of solar cells to PV modules. In this study, the power loss factors occurred in the Conversion of solar cells to PV modules are analyzed and it is proposed that how to reduce losses of the PV module. The types of power loss factor are (1)losses of front glass and encapsulant(generally EVA sheet), (2)losses by sorting miss, (3)losses by interconnection, (4)losses by the field aging of PV modules. In further study, experimental and evaluation will be conducted to make demonstrate for proposed solutions.

  • PDF

The Characteristic of Crystalline Si Solar Cell by Heat Shocking (Heat Shocking에 의한 결정질 실리콘 Solar Cell의 출력특성)

  • Shin, Jun-Oh;Jung, Tae-Hee;Kim, Tae-Bum;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.246-250
    • /
    • 2009
  • String & tabbing step in the crystalline PV module manufacturing process for the temperature directly affects solar cells. In fact, in the manufacture of PV modules tend to be temperature factor and the corresponding changes n the output shows the same characteristics. In this journal, it will be considered about thermal characteristics, especially changes of characteristic in high temperature of the solar cell through experiment that we measure electric output characteristics of solar cells after those are applied with high temperature changes for two seconds. And we can think about the possibility of efficiency improvements over looks in PV module manufacturing processes.

  • PDF

A study on the power conversion system using Dye-Sensitized Solar cell (DSC를 활용한 상용전력변환 시스템에 관한 연구)

  • Kim, Jin-Young;Park, Sung-June;Park, Hae-Young;Kim, Woo-Sung;Kim, Hwi-Young;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.195-198
    • /
    • 2006
  • The technology of Solar Power conversion System is defined as a solar cell that changes the sol ar energy into the direct electric energy, power conversion and control technology that convert the dc power into ac power The solar cell module, power conversion, and a control part in component parts consisting a solar power conversion system have influence on its performance. The roles of power conversion and a control part supply the direct current generated by solar cell module for a load with high efficiency as conveniently as possible in this study, the power conversion systen that can generate solar power using DSC module was developed and its characteristics was experimented. The characteristics of the DSC power conversion system including MOSFET and DSP micro processor, high speed devices, was simulated using Psim. According to the results, converter and inverter was manufactured in detail and the performance characteristics were studied.

  • PDF

Multi-layer Front Electrode Formation to Improve the Conversion Efficiency in Crystalline Silicon Solar Cell (결정질 실리콘 태양전지의 효율 향상을 위한 다층 전면 전극 형성)

  • Hong, Ji-Hwa;Kang, Min Gu;Kim, Nam-Soo;Song, Hee-Eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1015-1020
    • /
    • 2012
  • Resistance of the front electrode is the highest proportion of the ingredients of the series resistance in crystalline silicon solar cell. While resistance of the front electrode is decreased with larger area, it induces the optical loss, causing the conversion efficiency drop. Therefore the front electrode with high aspect ratio increasing its height and decreasing is necessary for high-efficiency solar cell in considering shadowing loss and resistance of front electrode. In this paper, we used the screen printing method to form high aspect ratio electrode by multiple printing. Screen printing is the straightforward technology to establish the electrodes in silicon solar cell fabrication. The several printed front electrodes with Ag paste on silicon wafer showed the significantly increased height and slightly widen finger. As a result, the resistance of the front electrode was decreased with multiple printing even if it slightly increased the shadowing loss. We showed the improved electrical characteristics for c-Si solar cell with repeatedly printed front electrode by 0.5%. It lays a foundation for high efficiency solar cell with high aspect ratio electrode using screen printing.