• Title/Summary/Keyword: SOLAR cell

Search Result 3,156, Processing Time 0.035 seconds

The Research of Ni/Cu Contact Using Light-induced Plating for Cryatalline Silicom Solar Cells (결정질 실리콘 태양전지에 적용될 Light-induced plating을 이용한 Ni/Cu 전극에 관한 연구)

  • Kim, Min-Jeong;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.350-355
    • /
    • 2009
  • The crysralline silicon solar cell where the solar cell market grows rapidly is occupying of about 85% or more high efficiency and low cost endeavors many crystalline solar cells. The fabricaion process of high efficiency crystalline silicon solar cells necessitate complicated fabrication processes and Ti/Pd/AG contact, This metal contacts have only been used in limited areas in spite of their good srability and low contact resistance because of expensive materials and process. Commercial solar cells with screen-printed solar cells formed by using Ag paste suffer from loe fill factor and high contact resistance and low aspect ratio. Ni and Cu metal contacts have been formed by using electroless plating and light-induced electro plating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposit the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 16.446 % on 0.2~0.6${\Omega}$ cm, $20{\times}20mm^2$, CZ(Czochralski) wafer.

  • PDF

Simulated Optimum Substrate Thicknesses for the BC-BJ Si and GaAs Solar Cells

  • Choe, Kwang-Su
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.450-453
    • /
    • 2012
  • In crystalline solar cells, the substrate itself constitutes a large portion of the fabrication cost as it is derived from semiconductor ingots grown in costly high temperature processes. Thinner wafer substrates allow some cost saving as more wafers can be sliced from a given ingot, although technological limitations in slicing or sawing of wafers off an ingot, as well as the physical strength of the sliced wafers, put a lower limit on the substrate thickness. Complementary to these economical and techno-physical points of view, a device operation point of view of the substrate thickness would be useful. With this in mind, BC-BJ Si and GaAs solar cells are compared one to one by means of the Medici device simulation, with a particular emphasis on the substrate thickness. Under ideal conditions of 0.6 ${\mu}m$ photons entering the 10 ${\mu}m$-wide BC-BJ solar cells at the normal incident angle (${\theta}=90^{\circ}$), GaAs is about 2.3 times more efficient than Si in terms of peak cell power output: 42.3 $mW{\cdot}cm^{-2}$ vs. 18.2 $mW{\cdot}cm^{-2}$. This strong performance of GaAs, though only under ideal conditions, gives a strong indication that this material could stand competitively against Si, despite its known high material and process costs. Within the limitation of the minority carrier recombination lifetime value of $5{\times}10^{-5}$ sec used in the device simulation, the solar cell power is known to be only weakly dependent on the substrate thickness, particularly under about 100 ${\mu}m$, for both Si and GaAs. Though the optimum substrate thickness is about 100 ${\mu}m$ or less, the reduction in the power output is less than 10% from the peak values even when the substrate thickness is increased to 190 ${\mu}m$. Thus, for crystalline Si and GaAs with a relatively long recombination lifetime, extra efforts to be spent on thinning the substrate should be weighed against the expected actual gain in the solar cell output power.

A Novel Simple Method to Abstract the Entire Parameters of the Solar Cell

  • Park, Minwon;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.86-91
    • /
    • 2004
  • PV power generation, which directly converts solar radiation into electricity, contains numerous significant advantages. It is inexhaustible and pollution-free, silent, contains no rotating parts, and has size-independent electricity conversion efficiency. The positive environmental effect of photovoltaics is that it replaces the more polluting methods of electricity generation or that it provides electricity where none was available before. This paper highlights a novel simple method to abstract the entire parameters of the solar cell. In development, design and operation of PV power generation systems, a technique for constructing V-I curves under different levels of solar irradiance and cell temperature conditions using basic characteristic values of the PV module is required. Everyone who has performed manual acquisition and analysis of solar cell I versus V data would agree that the job is tedious and time-consuming. A better alternative is to use an automated curve tracer to print out the I versus V curves and compute the four major parameters; $V_{oc}$, $I_{sc}$, FF, and . Generally, the V-I curve tracer indicates only the commonly used solar cell parameters. However, with the conventional V-I curve tracer it is almost impossible to abstract the more detailed parameters of the solar cell; A, $R_{s}$ and $R_{sh}$ , which satisfies the user, who aims at the analysis of the development of the PV power generation system, that being advanced simulation. In this paper, the proposed method provides us with satisfactory results to enable us to abstract the detailed parameters of the solar cell; A, $R_s$ and $R_{sh}$.>.

Rear Surface Passivation with Al2O3 Layer by Reactive Magnetron Sputtering for High-Efficiency Silicon Solar Cell

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Jeon, Jun-Hong;Choi, Jin-Young;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.211-211
    • /
    • 2012
  • The electrical loss of the photo-generated carriers is dominated by the recombination at the metal- semiconductor interface. In order to enhance the performance of the solar cells, many studies have been performed on the surface treatment with passivation layer like SiN, SiO2, Al2O3, and a-Si:H. In this work, Al2O3 thin films were investigated to reduce recombination at surface. The Al2O3 thin films have two advantages, such as good passivation properties and back surface field (BSF) effect at rear surface. It is usually deposited by atomic layer deposition (ALD) technique. However, ALD process is a very expensive process and it has rather low deposition rate. In this study, the ICP-assisted reactive magnetron sputtering method was used to deposit Al2O3 thin films. For optimization of the properties of the Al2O3 thin film, various fabrication conditions were controlled, such as ICP RF power, substrate bias voltage and deposition temperature, and argon to oxygen ratio. Chemical states and atomic concentration ratio were analyzed by x-ray photoelectron spectroscopy (XPS). In order to investigate the electrical properties, Al/(Al2O3 or SiO2,/Al2O3)/Si (MIS) devices were fabricated and characterized using the C-V measurement technique (HP 4284A). The detailed characteristics of the Al2O3 passivation thin films manufactured by ICP-assisted reactive magnetron sputtering technique will be shown and discussed.

  • PDF

Mitigation of Potential-Induced Degradation (PID) for PERC Solar Cells Using SiO2 Structure of ARC Layer (반사방지막(ARC)의 SiO2 구조에 따른 PERC 태양전지 PID 열화 완화 상관관계 연구)

  • Oh, Kyoung Suk;Park, Ji Won;Chan, Sung Il
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.114-119
    • /
    • 2020
  • In this study, Mitigation of Potential-induced degradation (PID) for PERC solar cells using SiO2 Structure of ARC layer. The conventional PID test was conducted with a cell-level test based on the IEC-62804 test standard, but a copper PID test device was manufactured to increase the PID detection rate. The accelerated aging test was conducted by maintaining 96 hours with a potential difference of 1000 V at a temperature of 60℃. As a result, the PERC solar cell of SiO2-Free ARC structure decreased 22.11% compared to the initial efficiency, and the PERC solar cell of the Upper-SiO2 ARC structure decreased 30.78% of the initial efficiency and the PID reliability was not good. However, the PERC solar cell with the lower-SiO2 ARC structure reduced only 2.44%, effectively mitigating the degradation of PID. Na+ ions in the cover glass generate PID on the surface of the PERC solar cell. In order to prevent PID, the structure of SiNx and SiO2 thin films of the ARC layer is important. SiO2 thin film must be deposited on bottom of ARC layer and the surface of the PERC solar cell N-type emitter to prevent surface recombination and stacking fault defects of the PERC solar cell and mitigated PID degradation.

Change of I-V Properties of Flexible CZTS Solar Cell Through Mechanical Bending Test (굽힘 시험에 의한 플렉시블 CZTS 태양전지의 I-V 특성 변화에 관한 연구)

  • Kim, Sungjun;Kim, Jeha
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.197-202
    • /
    • 2022
  • The CZTS solar cell is a thin film solar cell using an absorption layer composed of Cu, Zn, Sn, Se, and S, and is cheaper than a CIGS solar cell using In and Ga and more eco-friendly than a perovskite and CdTe solar cell using Pb and Cd. In this study, we conducted a bending test for flexible CZTS solar cells. Experiments were conducted in the direction of inner benidng with compressive stress and outer bending with tensile stress, and during the number of bending 1,000 times with a radius of curvature of 50 mmR, the efficiency of the solar cell decreased by up to 12.7%, and the biggest cause of efficiency reduction in both directions was a large decrease in parallel resistance.

Study on Flight Test of Small Solar-Powered UAV (소형 태양광 무인 항공기의 비행실험에 관한 연구)

  • An, Il-Young;Bae, Jae-Sung;Park, Sang-Hyuk
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.313-318
    • /
    • 2012
  • In the present study, the preliminary study on a small solar-powered RC airplane are performed for the development of a long-endurance solar-powered UAV. Solar energy enables the solar-powered UAV to fly longer or eternally. The solar-powered UAV transfers the solar energy to electric energy and this energy is used for the flight and the battery charge. To increase the flying time, the efficiency of the solar-cell power system must be increased and the required power for flight must be minimized. Hence, the system integration including solar cell and controller, the power system design, and the aerodynamic and structural designs of the UAV is very important. The present study have performed the design, manufacture, and flight test of the small solar-powered UAV for the preliminary study of the long-endurance solar-powered UAV. From this study, the system integration technology of the solar-powered UAV design is established, and the possibility and the issue points for the development of the long-endurance solar-powered UAV are discussed.

  • PDF

Electrical Characteristics of Crystalline Silicon Solar Cell Strip for High Power Photovoltaic Modules (고출력 슁글드 모듈 제작을 위한 결정질 실리콘 태양전지 분할 셀의 전기적 특성)

  • Noh, Eun Bin;Bae, Jae Sung;Kim, Jung Hoon;You, Jong Hyun;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.433-437
    • /
    • 2021
  • As the demand for new and renewable energy increases due to the depletion of fossil fuels, solar power generation, a core energy source for new and renewable energy, requires research on solar modules for high output power generation. In this paper, the electrical characteristics of solar cell strip at the edge and in the center of single-crystal silicon having a semi-square shape were analyzed. The cell strip located in the center showed the efficiency increase by 0.26% compared to the cell strip at the edge of the solar cell. A shingled photovoltaic module was manufactured for each cell strip. As a result, the output power of the module using the cell strip located in the center was higher by 0.992%.

A Basic Study on the Probabilistic Reliability Evaluation of Power System Considering Solar/Photovoltaic Cell Generator (태양광발전원을 고려한 전력계통의 신뢰도평가에 관한 기초연구)

  • Park, Jeong-Je;Wu, Liang;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.19-21
    • /
    • 2008
  • Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Solar energy is one of the most successful sources of renewable energy for the production of electrical energy following wind energy. And, the solar/photovoltaic cell generators can not make two-state model as conventional generators, but should be modeled as multi-state model due to solar radiation random variation. The method of obtaining reliability evaluation index of solar cell generators is different from the conventional generators. This paper presents a basic study on reliability evaluation of power system considering solar cell generators with multi-states.

  • PDF

Effects of reversible metastable defect induced by illumination on Cu(In,Ga)Se2 solar cell with CBD-ZnS buffer layer

  • Lee, Woo-Jung;Yu, Hye-Jung;Cho, Dae-Hyung;Wi, Jae-Hyung;Han, Won-Seok;Yoo, Jisu;Yi, Yeonjin;Song, Jung-Hoon;Chung, Yong-Duck
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.431-431
    • /
    • 2016
  • Typical Cu(In,Ga)Se2 (CIGS)-based solar cells have a buffer layer between CIGS absorber layer and transparent ZnO front electrode, which plays an important role in improving the cell performance. Among various buffer materials, chemical bath deposition (CBD)-ZnS is being steadily studied to alternative to conventional CdS and the efficiency of CBD-ZnS/CIGS solar cell shows the comparable values with that of CdS/CIGS solar cell. The intriguing thing is that reversible changes occur after exposure to illumination due to the metastable defect states in completed ZnS/CIGS solar cell, which induces an improvement of solar cell performance. Thus, it implies that the understanding of metastable defects in CBD-ZnS/CIGS solar cell is important issue. In this study, we fabricate the ITO/i-ZnO/CBD-ZnS/CIGS/Mo/SLG solar cells by controlling the NH4OH mole concentration (from 2 M to 3.5 M) of CBD-ZnS buffer layer and observe their conversion efficiency with and without light soaking for 1 hr. From the results, NH4OH mole concentration and light exposure can significantly affect the CBD-ZnS/CIGS solar cell performance. In order to investigate that which layer can contain metastable defect states to influence on solar cell performance, impedance spectroscopy and capacitance profiling technique with exposure to illumination have been applied to CBD-ZnS/CIGS solar cell. These techniques give a very useful information on the density of states within the bandgap of CIGS, free carriers density, and light-induced metastable effects. Here, we present the rearranged charge distribution after exposure to illumination and suggest the origin of the metastable defect states in CBD-ZnS/CIGS solar cell.

  • PDF