• Title/Summary/Keyword: SOIL WATER CONTENTS

Search Result 908, Processing Time 0.028 seconds

Mechanical Characteristics of Light-weighted Foam Soil Consisting of Dredged Soils (준설토를 이용한 경량기포혼합토의 역학적 특성 연구)

  • 김주철;이종규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.309-317
    • /
    • 2002
  • The mechanical characteristics of Light-Weighted Foam Soil(LWFS) are investigated in this research. LWFS is composed of the dredged soil from offshore, cement and foam to reduce the unit-weight and increase compressive strength. For this purpose, the unconfined compression tests and triaxial compression tests are carried out on the prepared specimens of LWFS with various conditions such as initial water contents, cement contents, curing conditions and confining stresses. The test results of LWFS indicated that the stress-strain relationship and the compressive strength are strongly influenced by the cement contents rather than the intial water contents of the dredged soils. On the other hand, the stress-strain relationship from triaxial compression test has shown strain-softening behavior regardless of curing conditions. The stress-strain behavior for the various confining stress exhibited remarkable change at the boundary where the confining stress approached to the unconfined compression strength of LWFS. In order to obtain the ground improvement of the compressive strength above 200kPa, the required LWFS mixing ratio is found to be 100%~160% of the initial water contents of dredged soil and 6.6% of cement contents.

A Study on the Paddy Soil and Water Quality in Boryung Freshwater Reservoir Watershed-During the non-cropping season- (보령 담수호 유역의 논토양 및 하천수질 특성 -비영농기간을 중심으로)

  • 최진규;구자웅;손재권;한강완;조재영;김선주
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.651-656
    • /
    • 1999
  • This study was carried out to investigate the paddy soil and water quality in Boryung freshwater reservoir watershed during the non-cropping season. Soil pH of the Boryung freshwater reservoir watershed were 5.39∼5.78. Total-N and P contents were high by the accumulation of chemical fertilizer partly. Heavy metal content of paddy soils were natural background level. Water pH of the Boryung freshwater reservoir watershed ranged from 6.82 to 8.64. Total-N content affected by a livestock wastes and sewage water were the higher than that of others and total-P content showed below 0.1mg/L. Nitrate nitrogen contents was very high according to the influence a livestock waste and sewage water partly. Heavy metal contents of wateers were natural background level.

  • PDF

Comparisons of Soil Water Retention Characteristics and FDR Sensor Calibration of Field Soils in Korean Orchards (노지 과수원 토성별 수분보유 특성 및 FDR 센서 보정계수 비교)

  • Lee, Kiram;Kim, Jongkyun;Lee, Jaebeom;Kim, Jongyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.401-408
    • /
    • 2022
  • As research on a controlled environment system based on crop growth environment sensing for sustainable production of horticultural crops and its industrial use has been important, research on how to properly utilize soil moisture sensors for outdoor cultivation is being actively conducted. This experiment was conducted to suggest the proper method of utilizing the TEROS 12, an FDR (frequency domain reflectometry) sensor, which is frequently used in industry and research fields, for each orchard soil in three regions in Korea. We collected soils from each orchard where fruit trees were grown, investigated the soil characteristics and soil water retention curve, and compared TEROS 12 sensor calibration equations to correlate the sensor output to the corresponding soil volumetric water content through linear and cubic regressions for each soil sample. The estimated value from the calibration equation provided by the manufacturer was also compared. The soil collected from all three orchards showed different soil characteristics and volumetric water content values by each soil water retention level across the soil samples. In addition, the cubic calibration equation for TEROS 12 sensor showed the highest coefficient of determination higher than 0.95, and the lowest RMSE for all soil samples. When estimating volumetric water contents from TEROS 12 sensor output using the calibration equation provided by the manufacturer, their calculated volumetric water contents were lower than the actual volumetric water contents, with the difference up to 0.09-0.17 m3·m-3 depending on the soil samples, indicating an appropriate calibration for each soil should be preceded before FDR sensor utilization. Also, there was a difference in the range of soil volumetric water content corresponding to the soil water retention levels across the soil samples, suggesting that the soil water retention information should be required to properly interpret the volumetric water content value of the soil. Moreover, soil with a high content of sand had a relatively narrow range of volumetric water contents for irrigation, thus reducing the accuracy of an FDR sensor measurement. In conclusion, analyzing soil water retention characteristics of the target soil and the soil-specific calibration would be necessary to properly quantify the soil water status and determine their adequate irrigation point using an FDR sensor.

Application of Electrical Resistivity Tomography to Analyze Soil Properties in Unsaturated Bone (불포화대 토양 특성 분석을 위한 전기비저항 토모그래피의 적용성)

  • Yong Hwan-Ho;Song Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.184-190
    • /
    • 2004
  • To analyze soil properties of unsaturated zone, we applied electrical resistivity tomography(ERT) of high resolution image. From linear relationship with each soil texture between results of ERT and soil properties such as electrical conductivity of pore water, water contents and ionic contents, we could be analyzed the result of ERT more effectively. Consequently, ERT can be useful for estimating soil properties between the two holes and evaluating indirectly pH and organic contents of soil.

Spatial Variability of Soil Moisture and Irrigation Scheduling for Upland Farming (노지 작물의 적정 관개계획을 위한 토양수분의 공간변이성 분석)

  • Choi, Yonghun;Kim, Minyoung;Kim, Youngjin;Jeon, Jonggil;Seo, Myungchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.81-90
    • /
    • 2016
  • Due to droughts and water shortages causing severe damage to crops and other vegetations, much attention has been given to efficient irrigation for upland farming. However, little information has been known to measure soil moisture levels in a field scale and apply their spatial variability for proper irrigation scheduling. This study aimed to characterize the spatial variability and temporal stability of soil water contents at depths of 10 cm, 20 cm and 30 cm on flat (loamy soil) and hill-slope fields (silt-loamy soil). Field monitoring of soil moisture contents was used for variogram analysis using GS+ software. Kriging produced from the structural parameters of variogram was applied for the means of spatial prediction. The overall results showed that the surface soil moisture presented a strong spatial dependence at the sampling time and space in the field scale. The coefficient variation (CV) of soil moisture was within 7.0~31.3 % in a flat field and 8.3~39.4 % in a hill-slope field, which was noticeable in the dry season rather than the rainy season. The drought assessment analysis showed that only one day (Dec. 21st) was determined as dry (20.4 % and 24.5 % for flat and hill-slope fields, respectively). In contrary to a hill-slope field where the full irrigation was necessary, the centralized irrigation scheme was appeared to be more effective for a flat field based on the spatial variability of soil moisture contents. The findings of this study clearly showed that the geostatistical analysis of soil moisture contents greatly contributes to proper irrigation scheduling for water-efficient irrigation with maximal crop productivity and environmental benefits.

Mobility of pesticides in different soil textures and gravel contents under soil column (토양 column을 이용한 토성 및 자갈함량별 농약 이동특성)

  • Lee, Sang-Min;Kim, Seong-Soo;Park, Dong-Sik;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.330-337
    • /
    • 2005
  • This study was investigated to elucidate the pesticide mobility in three different soil textures(Heongseong sandy loam; Chuncheon, loam; Taeback, silty clay loam) and four different gravel contents(0, 20, 40, 60%) of Taebaek soil using soil column. Carbofuran, which ranks the highest water solubility among 7 pesticides(carbendazim, carbofuran, chlorpyrifos, cypermethrin, dimethomorph, diniconazole and endosulfan) was defected over 87% in leachate samples within all soil types from early sampling time. Amount of 5 residual pesticides excluding carbendazim and carbofuran were ordered silty clay loam > loam > sandy loam, indicating pesticide residues are related to percentage of clay contents in soils. Comparing the amount of residual pesticides in soil column(upper, middle and lower layer), 6 pesticides apart from carbofuran were found in the range of $50{\sim}92%$ on the upper layer of silty clay loam and loam. Mobility of pesticides either in soil or leachate samples is dependant on water solubility of pesticide and clay content of soil. The results obtained from four different gravel contents of Tacback soil were similar to the results of three different soil textures. Also it was found that more the gravel contents, faster the flow velocity of leachate water. These results possibly provide an idea to select proper pesticides and to reduce soil and water contamination at alpine and sloped-land.

A New Calibration Equation for Predicting Water Contents With TDR (TDR의 함수비 예측을 위한 새로운 보정방정식)

  • Song, Minwoo;Kim, Daehyeon;Choi, Chanyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.59-65
    • /
    • 2015
  • The objective of the study is to verify a new calibration equation of dry density and water contents with TDR. Since the traditional calibration equation was proposed, some research to develop a new calibration equation has been conducted by several researchers. As traditional calibration equation is difficult to be applied for loose soil and fine-grained soil at high water contents, this study developed a new calibration equation. Thus, this study introduces a new calibration equation and its applicability by comparing TDR test results with conventional test results. Based on the analyses, the calibration equation for water content has large error. A new calibration equation was proposed and it showed more than 95% accuracy for estimating water content of soil.

Spatio-Temporal Changes and Drivers of Deforestation and Forest Degradation in North Korea (북한 산림의 시·공간 변화와 황폐화 추동)

  • Yu, Jaeshim;Kim, Kyoungmin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.73-83
    • /
    • 2015
  • The objective of this study is to establish implications for forest restoration planning in North Korea by analyzing spatio-temporal forest changes and detecting bio-physical factors driving forest degraded. We measured the relationship and spatial distribution between shifting cultivation and sparse forest. We also analyzed between degraded forest land and ecological variables by binary logistic regression to find biophysical drivers of forest degradation and deforestation in North Korea. Between the sparse forest and the shifting cultivation, a positive relationship is found (r=0.91) and scattered discontinuously throughout the country (Moran's I = -1, Z score = -13.46 (p=0.000)). The sparse forest showed a negative relationship with the warmest month(bio 9), the coldest month(bio10), and the minimum of soil water contents (swc_min), while the shifting cultivation had a negative relationship with the warmest month(bio 9) and the minimum of soil water contents(swc_min). However, the most critical drivers convert forests into sloping farmland were the three months rainfall in summer(bio8) and the yearly mean of soil water contents. Such results reflect the growth period of crops which overlaps with the rainy season in North Korea and the recent land reclamation of uplands where the soil water contents are maintained with a dense forest. When South Korea aids forest restoration projects in North Korea, in consideration of food shortage due to North Korea's cropland deficiency, terrace farmlands where soil water contents can be maintained should be excluded from the priority restoration area. In addition, an evaluation method for selecting a potential restoration area must be modified and applied based on multiple criteria including altitude and socio-economic factors in the respective regions.

Analysis of Soil Ionization Behaviors under Impulse Currents

  • Lee, Bok-Hee;Park, Geon-Hun;Kim, Hoe-Gu;Lee, Kyu-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.98-105
    • /
    • 2009
  • This paper presents the characteristics of soil ionization for different water contents, and the parameters associated with the dynamic properties of a simple model grounding system subject to lightning impulse currents. The laboratory experiments for this study were carried out based on factors affecting the soil resistivities. The soil resistivities are adjusted with water contents in the range from 2 to 8% by weight. A test cell with a spherical electrode buried in the middle of the hemispherical container was used. As a result, the electric field intensity $E_c$ initiating ionization is decreased with the reduction of soil resistivities. Also, as the water content increased, the pre-ionization resistance $R_1$ and the post-ionization resistance $R_2$ became lower with increasing current amplitude. The time-lag to ionization $t_1$ and the time-lag to the second current peak $t_2$ at high applied voltages were significantly shorter than those of low applied voltages. It was found that the soil ionization behaviors are highly dependent on the water content and the applied voltage amplitude.

Uptake Capacity of Heavy Metals by Water Plants (수생식물의 중금속 흡수능에 관한 연구)

  • 이종화;함용규;박종안
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.3_4
    • /
    • pp.23-32
    • /
    • 1996
  • In this study, we investgated the uptake capacity of several water plants for heavy metals (lead and cadmium) in soil of rivers where are adjacent to a industrial complex in Chun-An city and in A-San city. We also examined the deposition pattern of heavy metal in plants. The results are as follows: 1. The soil of river in Chun-An city was polluted more serious than that of A-San city. In Chun-An city, mean values of lead and cadmium contents in soil were 26.224 $\pm$ 28.037 $\mu$g/g, and 0.854 $\pm$ 1. 127 $\mu$g/g, respectively. 2. Water plants examined in this study were Slum suave KITAGAWA, Persicaria thunbergii H. GROSS, Phragmiles japonica STEUD, Echinochloa crus-galli var. frumentacea WIGHT and Persicaria hydropiper SPACH. Both metal contents of several water plants distributed in Chun-An city were higher than those in A-San city. In these plants, Slum suave showed the highest uptake capacity for lead and cadmium. The mean values of lead and cadmium contents in Slum suave were 40.957 $\pm$ 29.577 $\mu$g/g and 1. 930 $\pm$ 1. 076 $\mu$g/g, respectively. Persicaria thunbergii also showed a relatively high uptake capacity for both metal. 3. Correlation between metal contents in soil and water plants was high. In both cases of Sium suave and Persicaria thunbergii correlation coefficients were 0.605 and 0.549, respectively. 4. We analyzed lead and cadmium contents in root, stem and leaf of several water plants. Both metals were mostly deposited in root. Much of both metals were also deposited in leaf. From the results, we suggest that Slum suave KITAGAWA and Persicaria thunbegii H. GROSS can be used to reduce heavy metals from industrial waste water.

  • PDF