• Title/Summary/Keyword: SOIL EROSION

Search Result 801, Processing Time 0.029 seconds

The Estimation of Soil Erosion Factors of Cutting Slope using RC Helicopter Image (무선조종 헬기 영상을 이용한 절취단면의 토사유출인자 산정)

  • Cho, Yong-Jae;Lee, Young-Do;Jung, Beom-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.82-90
    • /
    • 2007
  • Recently, the development project is conducting disaster effect estimation to breed disaster, and cope these disaster beforehand provoking soil erosion and flood. Therefore, it is important to analyze and reduce of these disaster. In this study, it is intended to extract LS and C factors of soil erosion through the digital image. The photogrammetric technique, which employs the Remote Control Helicopter equipped with a non-metric digital camera, was used for the efficient survey and analysis of cutting slopes. As a result, we obtain more objective value of soil erosion factor using digital image.

  • PDF

Grid-Based Soil-Water Erosion and Deposition Modeling sing GIS and RS

  • Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.25-34
    • /
    • 2001
  • A grid-based KIneMatic wave soil-water EROsion and deposition Model (KIMEROM) that predicts temporal variation and spatial distribution of sediment transport in a watershed was developed. This model uses ASCII-formatted map data supported from the regular gridded map of GRASS (U.S. Army CERL, 1993)-GIS (Geographic Information Systems), and generates the distributed results by ASCIIl-formatted map data. For hydrologic process, the kinematic wave equation and Darcy equation were used to simulate surface and subsurface flow, respectively (Kim, 1798; Kim et al., 1993). For soil erosion process, the physically-based soil erosion concept by Rose and Hairsine (1988) was used to simulate soil-water erosion and deposition. The model adopts sing1e overland flowpath algorithm and simulates surface and subsurface water depth, and sediment concentration at each grid element (or a given time increment. The model was tested to a 162.3 km$^2$ watershed located in the tideland reclaimed area of South Korea. After the hydrologic calibration for two storm events in 1999, the results of sediment transport were presented for the same storm events. The results of temporal variation and spatial distribution of overland flow and sediment areas are shown using GRASS.

  • PDF

Surface erosion behavior of biopolymer-treated river sand

  • Kwon, Yeong-Man;Cho, Gye-Chun;Chung, Moon-Kyung;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.49-58
    • /
    • 2021
  • The resistance of soil to the tractive force of flowing water is one of the essential parameters for the stability of the soil when directly exposed to the movement of water such as in rivers and ocean beds. Biopolymers, which are new to sustainable geotechnical engineering practices, are known to enhance the mechanical properties of soil. This study addresses the surface erosion resistance of river-sand treated with several biopolymers that originated from micro-organisms, plants, and dairy products. We used a state-of-the-art erosion function apparatus with P-wave reflection monitoring. Experimental results have shown that biopolymers significantly improve the erosion resistance of soil surfaces. Specifically, the critical shear stress (i.e., the minimum shear stress needed to detach individual soil grains) of biopolymer-treated soils increased by 2 to 500 times. The erodibility coefficient (i.e., the rate of increase in erodibility as the shear stress increases) decreased following biopolymer treatment from 1 × 10-2 to 1 × 10-6 times compared to that of untreated river-sands. The scour prediction calculated using the SRICOS-EFA program has shown that a height of 14 m of an untreated surface is eroded during the ten years flow of the Nakdong River, while biopolymer treatment reduced this height to less than 2.5 m. The result of this study has demonstrated the possibility of cross-linked biopolymers for river-bed stabilization agents.

Studies on the Surface Runoff and Soil Erosion in the Forest Fire Area (산불발생지의 표면유출수와 토양침식량에 관한 연구)

  • Jung, Won-Ok;Ma, Ho-Seop
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • The purpose of this study was to evaluate the burning impacts of the surface and crown fire occured in yongsan-ri meongsok-myun of chinju-city, Gyeongnam. Environmental influences like surface runoff and soil erosion changes were investigated by comparisons analysis between burned and unburned area about some initial effects after fire. The results obtained from this study were as followed; 1. The average amount of surface runoff in burned area was more 1.7 times than in unburned area. But it was gradually tend to decrease in burned area as times passed. 2. Factors significantly correlated to amount of surface runoff in burned area shown in order to unit rainfall, accumulated rainfall and sand content, as 0.9466 of multiple correlation coefficient, where as the factors in unburned area were unit rainfall, soil erosion, bulk density and soil hardness, as 0.9738 of multiple correlation coefficient. 3. The average amount of soil erosion in burned area was more 11.2 times than in unburned area. But it was gradually tend to decrease in burned area as times passed. 4. Factors significantly correlated to amount of soil erosion in burned area were surface runoff and unit rainfall, as 0.6305 of multiple correlation coefficient. The factors in unburned area shown in order to surface runoff, sand content, bulk density and unit rainfall, as 0.7879 of multiple correlation coefficient.

  • PDF

Effect of DEM Resolution in USLE LS Factor (USLE LS 인자 구축시 DEM 해상도가 미치는 영향)

  • Koo, Ja-Young;Yoon, Dae-Soon;Lee, Dong Jun;Han, Jeong Ho;Jung, Younghun;Yang, Jae E;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.89-97
    • /
    • 2016
  • Digital Elevation Models (DEMs) have been used to represent the effects of topography on soil erosion. A DEM of 30 m resolution is frequently used in hydrology and soil erosion studies because the National Water Management Information System (WAMIS) provides a 30 m resolution DEM at national scale on its web site. However, the Ministry of Environment recommends the use of a DEM with 10 m resolution for evaluation of soil erosion due to the fact that soil erosion estimation is to some degree affected by the spatial resolution of DEM. In this regard, a DEM with 5 m resolution was resampled for 10 × 10 m, 20 × 20 m, 30 × 30 m, 50 × 50 m, 70 × 70 m, and 100 × 100 m resolutions, respectively. USLE LS factors and soil erosion values were evaluated using these datasets. Use of a DEM with at least 30 m resolution provided reasonable LS factors and soil erosion values at a watershed.

Estimation of Soil Erosion and Sediment Outflow in the Mountainous River Catchment (산지하천 유역의 토양침식량과 유사유출량 평가)

  • Kim, DongPhil;Kim, JooHun
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.221-233
    • /
    • 2014
  • Soil erosion, transportation, and sedimentation by water flow often occur in a stream. This excessive occurrence threatens the safety of hydraulic structures, and aggravates natural disasters like flood. To prevent soil disaster according to the soil erosion, it is necessary to predict accurate sediment outflow primarily. Besides, it is very important to choose appropriate models by basin characteristics, to estimate accurate quantity of related factors, and to acquire available hydrological data. Therefore, the purpose of this study is to estimate soil erosion amount and sediment amount according to rainfall-runoff by using rainfall, discharge, and sediment in the Seolmacheon experimental catchment. And, it proposed sediment delivery ratio of the Seolmacheon catchment by result of studying sediment delivery ratio. Hereafter, this study will estimate sediment delivery ratio by basin characteristics, and formulate the method of estimating soil erosion and sediment outflow in various conditions by applying the results in other catchments.

Predicting Surface Runoff and Soil Erosion from an Unpaved Forest Road Using Rainfall Simulation (인공강우실험에 의한 임도노면의 지표유출량 및 토양유실량 평가)

  • Eu, Song;Li, Qiwen;Lee, Eun Jai;Im, Sangjun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.3
    • /
    • pp.13-22
    • /
    • 2015
  • Unpaved forest roads are common accessways in mountain areas being used for forestry purposes. The presence of forest roads produces large volumes of surface runoff and sediment yield due to changes in soil properties and hillslope profile. Rainfall simulation experiments were conducted to estimate the impacts of above-ground vegetation and antecedent soil water condition on hydrology and sediment processes. A total of 9 small plots($1m{\times}0.5m$) were installed to represent different road surface conditions: no-vegetation(3 plots), vegetated surface(3 plots), and cleared vegetation surface(3 plots). Experiments were carried out on dry, wet, and very wet soil moisture conditions for each plot. Above ground parts of vegetation on road surface influenced significantly on surface runoff. Runoff from no-vegetation roads(39.24L) was greater than that from vegetated(25.05L), while cleared-vegetation condition is similar to no-vegetation roads(39.72L). Runoff rate responded in a similar way to runoff volume. Soil erosion was also controlled by land cover, but the magnitude is little than that of surface runoff. Even though slight differences among antecedent soil moisture conditions were found on both runoff and soil erosion, runoff rate and soil losses were increased in very wet condition, followed by wet condition. The experiments suggest that vegetation cover on forest road surface seems most effective way to reduce surface runoff and soil erosion during storm periods.

Monitoring on the Soils and Plant Growth in Modular Sloped Rooftop Greening System (모듈형 경사지붕 녹화시스템의 토양과 식물생육 모니터링)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.5
    • /
    • pp.53-67
    • /
    • 2011
  • The major objective of this study was to quantify the effects of substrate depth and substrate composition on the development of sedum etc., in a sloped rooftop (6 : 12 pitch) environment during a 4-year period. The experiment was conducted from 2006 October to 2010 December under several conditions without soil erosion control : two substrate depth (5cm, 10cm), four substrate composition (A5N3C2, A3N3C4, A6C4, G5L3C2: A: artificial lightweight soil, N : natural soil, G : granite decomposed soil, C : leave composite, L : loess), four sloped roof direction ($E40^{\circ}W$, $W40^{\circ}N$, $S40^{\circ}W$, $N40^{\circ}E$). In this experiment 4 sedum etc., were used: Sedum sarmentosum, Sedum kamtschaticum, Sedum rupestre, Sedum telephium, flowering herbs (mixed seed : Taraxacum platycarpum, Lotus corniculatus, Aster yomena, Aster koraiensis), western grasses (mixed seed : Tall fescue, Creeping redfescue, Bermuda grass, Perennial ryegrass). The establishment factor had two levels : succulent shoot establishment (sedum), seeding (flowering herbs, western grasses). 1. Enkamat, as it bring about top soil exfoliation, was unsuitable material for soil erosion control. 2. Sedum species exhibited greater growth at a substrate depth of 10cm relative to 5cm. All flowering herbs and western grasses established only at a substrate depth of 5cm were died. A substrate depth of 5cm was not suited in sloped rooftop greening without maintenance. If additional soil erosion control will be supplemented, a substrate depth of 10cm in sloped rooftop greening without maintenance was considered suitable. 3. For all substrate depth and composition, the most abundant species was Sedum kamtschaticum. The percentage of surviving Sedum kamtschaticum was 73.4% at a substrate depth of 10cm in autumn 2007 one year after the roof vegetation had been established. But the percentage of surviving other sedum were 33.3%~51.9%, therefor mulching for soil erosion control was essential after rooftop establishment in extensive sloped roof greening was proved. To raise the ratio of plant survival, complete establishment of plant root at substrate was considered essential before rooftop establishment. 4. There was a significant interaction between biomass and substrate moisture content. There were also a significant difference of substrate moisture and erosion among substrate composition. The moisture content of A6C4 was highest, the resistance to erosion of A5N3C2 was highest among substrate composition. The biomass of plants were not significantly higher in A5N3C2 and A6C4 relative to A3N3C4 and G5L3C2, For substrate moisture and erosion resistance, A5N3C2 and A6C4 were considered suitable in sloped rooftop greening without maintenance. 5. There were significant difference among roof slope direction on the substrate moisture. Especially, the substrate moisture content of $S40^{\circ}W$ was lower relative to that of $N40^{\circ}E$, that guessed by solar radiation and erosion.

Soil Erosion Risk Assessment in the Upper Han River Basis Using Spatial Soil Erosion Map (분포형 토양침식지도를 이용한 한강상류지역 토양유실 위험성 평가)

  • Park, Chan-Won;Sonn, Yeon-Kyu;Zhang, Yong-Seon;Hong, S.-Young;Hyun, Byung-Keun;Song, Kwan-Cheol;Ha, Sang-Keun;Moon, Young-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.828-836
    • /
    • 2010
  • This study was conducted to evaluate soil erosion risk with a standard unit watershed in the upper Han river basin using the spatial soil erosion map according to the change of landuse. The study area is 14,577 $km^2$, which consists of 10 subbasins, 107 standard unit watersheds. Total annual soil loss and soil loss per area estimated were $895{\times}10^4\;Mg\;yr^{-1}$ and 6.1 Mg $ha^{-1}\;yr^{-1}$, respectively. A result of analysis with a subbasin as a unit showed that annual soil losses and soil loss per area in Namhan river basins was more than in Bukhan river ones. Predicted annual soil loss according to the landuse ranked as Forest & Grassland > Upland ${\gg}$ Urban & Fallow area > Paddy field > Orchard. Upland area covered 6.2% of the study area, but the contribution of total annul soil loss was 40.6% and that of Forest & Grassland was 44.2%. As a evaluation of soil erosion risk using the spatial soil erosion map, we could precisely conformed the potential hazardous region of soil erosion in each unit watersheds. The ratio of regions, graded as higher "Moderate" for annual soil loss, were respectively 8.7%, 7.9% and 7.8% in 1001, 1002 and 1003 subbasins in Namhan river basin. Most landuse of these area was upland, and these area is necessary to establish soil conservation practices to reduce soil erosion based on the field observation.

The Estimation of Soil Erosion Fact of Cutting Slope Using Digital Image (디지털 영상을 이용한 절취단면의 토사유출인자 산정)

  • Lee Jong-Chool;Yang Won-Young;Heo Jong-Ho;Cho Yong-Jae
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.527-531
    • /
    • 2006
  • Recently, the development project is conducting disaster effect estimation to breed disaster, and cope these disaster beforehand provoking soil erosion and flood. Therefore, it is became important to analysis and reduce of these disaster. In this study, receive value of LS and C factor of soil erosion through the digital image. The method of photogrammetry was employed for the efficient surveying and analysis of cutting slope using Remote Control Helicopter installed with a nonmetric digital camera. As a result, we obtain more objectivity value of soil erosion factor using digital image analysis.

  • PDF