• Title/Summary/Keyword: SOI

Search Result 605, Processing Time 0.032 seconds

SOl Pressure Sensors (SOI 압력(壓力)센서)

  • Chung, Gwiy-Sang;Ishida, Makoto;Nakamura, Tetsuro
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.5-11
    • /
    • 1994
  • This paper describes the characteristics of a piezoresistive pressure sensor fabricated on a SOI (Si-on-insulator) structure, in which the SOI structures of Si/$SiO_{2}$/Si and Si/$Al_{2}O_{3}$/Si were formed by SDB (Si-wafer direct bonding) technology and hetero-epitaxial growth, respectively. The SOI pressure sensors using the insulator of a SOI structure as the dielectrical isolation layer of piezoresistors, were operated at higher temperatures up to $300^{\circ}C$. In the case of pressure sensors using the insulator of a SOI structure as an etch-stop layer during the formation of thin Si diaphragms, the pressure sensitivity variation of the SOI pressure sensors was controlled to within a standard deviation of ${\pm}2.3%$ over 200 devices. Moreover, the pressure sensors fabricated on the double SOI ($Si/Al_{2}O_{3}/Si/SiO_{2}/Si$) structures formed by combining SDB technology with epitaxial growth also showed very excellent characteristics with high-temperature operation and high-resolution.

  • PDF

Fabrication of SOI Structures with Buried Cavities for Microsystems SDB and Electrochemical Etch-stop (SDB와 전기화학적 식각정지에 의한 마이크로 시스템용 매몰 공동을 갖는 SOI 구조의 제조)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo;Choi, Sung-Kyu
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.54-59
    • /
    • 2002
  • This paper describes a new process technique for batch process of SOI(Si-on-Insulator) structures with buried cavities for MEMS(Micro Electro Mechanical System) applications by SDB(Si-wafer Direct Bonding) technology and electrochemical etch-stop. A low-cost electrochemical etch-stop method is used to control accurately the thickness of SOI. The cavities were made on the upper handling wafer by Si anisotropic etching. Two wafers are bonded with an intermediate insulating oxide layer. After high-temperature annealing($1000^{\circ}C$, 60 min), the SDB SOI structure with buried cavities was thinned by electrochemical etch-stop. The surface of the fabricated SDB SOI structure have more roughness that of lapping and polishing by mechanical method. This SDB SOI structure with buried cavities will provide a powerful and versatile substrate for novel microsensors arid microactuators.

Dynamic Self-Heating Effects of Bulk and SOI FinFET with Realistic Device Structure (실제적 구조를 가진 벌크 및 SOI FinFET에서 발생하는 동적 self-heating 효과)

  • Ryu, Heesang;Chung, Hayun Cecillia;Yang, Ji-Woon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.64-69
    • /
    • 2015
  • Self-heating effects of bulk and SOI FinFETs on device structure are examined with TCAD simulation. The degradation of drive current in SOI FinFET is severer than that of bulk one in steady-state condition as expected. However, it is shown that the dynamic self-heating effects of SOI FinFETs are comparable to those of bulk FinFETs for high speed logic operation, especially in realistic device structure.

High Speed Non-Inverting SOI Buffer Circuit by Adopting Dynamic Threshold Control (동적 문턱전압 제어 기법을 이용한 고속 비반전 SOI 버퍼 회로)

  • 이종호;박영준
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.28-36
    • /
    • 1998
  • We have proposed a new non-inverting SOI buffer circuit for the high speed operation at low supply voltage. The body biases of main MOS devices in the proposed circuit are controlled dynamically via subsidiary MOS device connected efficiently to the body terminal. We showed current derivability of the body controlled devices obtained by device simulation and compared with that of conventional SOI devices. Delay time characteristics of the buffer circuit were analyzed by SPICE simulation and compared with those of conventional SOI CMOS buffer circuits. Delay time reduction of the SOI buffer over conventional SOI CMOS buffer with same area is about 36 % at $V_{S}$=1.2 V and $C_{L}$=2 pF. pF.

  • PDF

Design of SOI CMOS image sensors using a nano-wire MOSFET-structure photodetector (나노 와이어 MOSFET 구조의 광검출기를 가지는 SOI CMOS 이미지 센서의 픽셀 설계)

  • Do, Mi-Young;Shin, Young-Shik;Lee, Sung-Ho;Park, Jae-Hyoun;Seo, Sang-Ho;Shin, Jang-Kyoo;Kim, Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.387-394
    • /
    • 2005
  • In order to design SOI CMOS image sensors, SOI MOSFET model parameters were extracted using the equation of bulk MOSFET model parameters and were optimized using SPICE level 2. Simulated I-V characteristics of the SOI NMOSFET using the extracted model parameters were compared to the experimental I-V characteristics of the fabricated SOI NMOSFET. The simulation results agreed well with experimental results. A unit pixel for SOI CMOS image sensors was designed and was simulated for the PPS, APS, and logarithmic circuit using the extracted model parameters. In these CMOS image sensors, a nano-wire MOSFET photodetector was used. The output voltage levels of the PPS and APS are well-defined as the photocurrent varied. It is confirmed that SOI CMOS image sensors are faster than bulk CMOS image sensors.

Optical process of polysilicaon on insulator and its electrical characteristics (절연체위의 다결정실리콘 재결정화 공정최적화와 그 전기적 특성 연구)

  • 윤석범;오환술
    • Electrical & Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.331-340
    • /
    • 1994
  • Polysilicon on insulator has been recrystallized by zone melting recrystallization method with graphite strip heaters. Experiments are performed with non-seed SOI structures. When the capping layer thickness of Si$\_$3/N$\_$4//SiO$\_$2/ is 2.0.mu.m, grain boundaries are about 120.mu.m spacing and protrusions reduced. After the seed SOI films are annealed at 1100.deg. C in NH$\_$3/ ambient for 3 hours, the recrystallized silicon surface has convex shape. After ZMR process, the tensile stress is 2.49*10$\^$9/dyn/cm$\^$2/ and 3.74*10$\^$9/dyn/cm$\^$2/ in the seed edge and seed center regions. The phenomenon of convex shape and tensile stress difference are completely eliminated by using the PSG/SiO$\_$2/ capping layer. The characterization of SOI films are showed that the SOI films are improved in wetting properties. N channel SOI MOSFET has been fabricated to investigate the electrical characteristics of the recrystallized SOI films. In the 0.7.mu.m thickness SOI MOSFET, kink effects due to the floating substrate occur and the electron mobility was calculated from the measured g$\_$m/ characteristics, which is about 589cm$\^$2//V.s. The recrystallized SOI films are shown to be a good single crystal silicon.

  • PDF

A 5GHz-Band Low Noise Amplifier Using Depletion-type SOI MOSFET (공핍형 SOI MOSFET를 이용한 5GHz대역 저잡음증폭기)

  • Kim, Gue-Chol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2045-2051
    • /
    • 2009
  • A 5-GHz band Low Noise Amplifier(LNA) using SOI MOSFET is designed. To improve the noise performance, depletion-type SOI MOSFET is adopted, and it is designed by the two-stage topology consisting of common-source and common-gate stages for low-voltage operation. The fabricated LNA achieved an S11 of less than -10dB, voltage gain of 21dB with a power consumption of 8.3mW at 5.5GHz, and a noise figure of 1.7dB indicated that the depletion-type LNA improved the noise figure by 0.3dB compared with conventional type. These results show the feasibility of a CMOS LNA employing depletion-type SOI MOSFET for low-noise application.

Electrical Characterization of nano SOl wafer by Pseudo MOSFET (Pseudo-MOSFET을 이용한 nano SOI 웨이퍼의 전기적 특성분석)

  • Bae, Young-Ho;Kim, Byoung-Gil;Kwon, Kyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.3-4
    • /
    • 2005
  • The Pseudo-MOSFET measurements technique has been used for the electrical characterization of the nano SOL Silicon islands for the Pseudo-MOS measurements were fabricated by selective etching of surface silicon film with dry or wet etching to examine the effects of the etching process on the device properties. The characteristics of the Pseudo-MOS was not changed greatly in the case of thick SOI film which was 205 nm. However the characteristics of the device was dependent on etching process in the case of less than 100 nm thick SOI film. The sub 100nm SOI was obtained by thinning the silicon film of standard thick SOI. The thickness of SOI film was varied from 88 nm to 44 nm by chemical etching. The etching process effects on the properties of pseudo-MOSFET characteristics, such as mobility, turn-on voltage, and drain current transient. The etching process dependency is greater in the thinner SOI and related to original SOI wafer quality.

  • PDF

Basic Issues in SOI Technology : Device Properties and Processes and Wafer Fabrication (SOI 기술의 이해와 고찰: 소자 특성 및 공정, 웨이퍼 제조)

  • Choe, Kwang-Su
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.613-619
    • /
    • 2005
  • The ever increasing popularity and acceptance in the market place of portable systems, such as cell phones, PDA, notebook PC, etc., are fueling effects in further miniaturizing and lowering power consumption in these systems. The dynamic power consumption due to the CPU activities and the static power consumption due to leakage currents are two major sources of power consumption. Smaller devices and a lower de voltage lead to reducing the power requirement, while better insulation and isolation of devices lead to reducing leakage currents. All these can be harnessed in the SOI (silicon-on-insulator) technology. In this study, the key aspects of the SOI technology, mainly device electrical properties and device processing steps, are briefly reviewed. The interesting materials issues, such as SOI structure formation and SOI wafer fabrication methods, are then surveyed. In particular, the recent technological innovations in two major SOI wafer fabrication methods, namely wafer bonding and SIMOX, are explored and compared in depth. The results of the study are nixed in that, although the quality of the SOI structures has shown great improvements, the processing steps are still found to be too complex. Between the two methods, no clear winner has yet emerged in terms of the product quality and cost considerations.

Statistical Timing Analysis of Partially-Depleted SOI Gates (부분 공핍형 SOI 게이트의 통계적 타이밍 분석)

  • Kim, Kyung-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.31-36
    • /
    • 2007
  • This paper presents a novel statistical characterization for accurate timing analysis in Partially-Depleted Silicon-On-Insulator (PD-SOI) circuits in BSIMSOI3.2 100nm technology. The proposed timing estimate algorithm is implemented in Matlab, Hspice, and C, and it is applied to ISCAS85 benchmarks. The results show that the error is within 5% compared with Monte Carlo simulation results.