Gender prediction accuracy increases as convolutional neural network (CNN) architecture evolves. This paper compares voting and ensemble schemes to utilize the already trained five CNN models to further improve gender prediction accuracy. The majority voting usually requires odd-numbered models while the proposed softmax-based voting can utilize any number of models to improve accuracy. The ensemble of CNN models combined with one more fully-connected layer requires further tuning or training of the models combined. With experiments, it is observed that the voting or ensemble of CNN models leads to further improvement of gender prediction accuracy and that especially softmax-based voters always show better gender prediction accuracy than majority voters. Also, compared with softmax-based voters, ensemble models show a slightly better or similar accuracy with added training of the combined CNN models. Softmax-based voting can be a fast and efficient way to get better accuracy without further training since the selection of the top accuracy models among available CNN pre-trained models usually leads to similar accuracy to that of the corresponding ensemble models.
본 논문에서는 자원제한적인 IoT 환경에서 스케줄링 정확도 향상을 위해 Softmax를 이용한 Q-learning 기반의 패킷 스케줄링 기법을 제안한다. 기존 Q-learning의 Exploitation과 Exploration의 균형을 유지하기 위해 e-greedy 기법이 자주 사용되지만, e-greedy는 Exploration 과정에서 최악의 행동이 선택될 수도 있는 문제가 발생한다. 이러한 문제점을 해결하기 위해 본 연구에서는 Softmax를 기반으로 다중 센서 노드 환경에서 데이터 패킷에 대한 Quality of Service (QoS) requirement 정확도를 높이기 위한 연구를 진행한다. 이 때 Temperature 매개변수를 사용하는데, 이는 새로운 정책을 Explore 하기 위한 매개변수이다. 본 논문에서는 시뮬레이션을 통하여 제안된 Softmax를 이용한 Q-learning 기반의 패킷 스케줄링 기법이 기존의 e-greedy를 이용한 Q-learning 기법에 비해 스케줄링 정확도 측면에서 우수함을 보인다.
현실 세계에서는 기존에 알려지지 않은 새로운 유형의 변종 공격이 끊임없이 등장하고 있지만, 인공신경망과 지도학습을 통해 개발된 공격 트래픽 분류모델은 학습을 실시하지 않은 새로운 유형의 공격을 제대로 탐지하지 못한다. 기존 연구들 대부분은 이러한 문제점을 간과하고 인공신경망의 구조 개선에만 집중한 결과, 다수의 새로운 공격을 정상 트래픽으로 분류하는 현상이 빈번하게 발생하여 공격 트래픽 분류성능이 심각하게 저하되었다. 한편, 다중분류 문제에서 각 클래스에 대한 분류가 정답일 확률을 결과값으로 출력하는 소프트맥스(softmax) 함수도 학습하지 않은 새로운 유형의 공격 트래픽에 대해서는 소프트맥스 점수를 제대로 산출하지 못하여 분류성능의 신뢰도 또는 정확도를 제고하는데 한계를 노출하고 있다. 이에 본 논문에서는 소프트맥스 함수의 이러한 특성을 활용하여 모델이 일정 수준 이하의 확률로 판단한 트래픽을 공격으로 분류함으로써 새로운 유형의 공격에 대한 탐지성능을 향상시키는 방안을 제안하고, 실험을 통해 효율성을 입증한다.
일반적으로 얼굴인식 시스템은 영상에서 추출한 Feature와 DB 상의 Feature를 비교하는 구조를 가지고 있다. 하지만 원하는 Class의 Feature만 보고 DB 상에서 일치하는 Class의 위치를 특정하는 것은 불가능하기에 DB 상의 모든 Feature와 비교하는 절차가 필요하다. DB 크기가 커짐에 따라 처리시간과 메모리상의 문제가 발생하는데, 이 논문에서는 이를 해결하기 위한 Deep Hashing 모델을 제안한다. Softmax 기반의 Loss를 이용하여 학습하였고, 8-bits의 해시를 추출하였을 때 53%의 Feature 일치율을 보였으며, 이를 사용할 경우 DB 평균 대조군을 23% 이하로 줄이는 효과를 볼 수 있을 것으로 추정한다.
인간이 가진 뛰어난 능력 중의 하나인 곡 분류 과정을 딥러닝 알고리즘을 통해 구현하는 연구는 단일데이터를 이용한 유니모달 모델, 멀티모달 모델, 뮤직비디오를 이용한 멀티모달 방식 등이 있다. 이 연구에서는 곡의 스펙트로그램을 짧은 샘플들로 분할하여 각각을 CNN으로 분석한 뒤 그 결과를 투표하는 시스템을 제안하여 더 좋은 결과를 얻었다. 딥러닝 알고리즘 중 CNN이 RNN에 비해 음악 장르 구분에 있어 우수한 성능을 보였으며 CNN과 RNN을 같이 적용했을 때 성능이 좋아짐을 알 수 있었다. 음악샘플을 나누어 각각의 CNN 결과를 투표하는 시스템이 이전 모델에 비해 좋은 결과를 나타내었고 이 모델에 Softmax 레이어를 추가한 모델이 가장 좋은 성능을 보였다. 디지털 미디어의 폭발적인 성장과 수많은 스트리밍 서비스 속에서 음악장르의 자동분류에 대한 필요는 점점 증가하고 있는 추세이다. 향후 연구에서는 미분류 곡의 비율을 낮추고 최종적으로 미분류된 곡들의 장르구분에 대한 알고리즘을 개발할 필요가 있을 것이다.
This paper concerns a design and learning method of softmax function neural networks based on K-means clustering. The partial discharge data Information is preliminarily processed through simulation using an Epoxy Mica Coupling sensor and an internal Phase Resolved Partial Discharge Analysis algorithm. The obtained information is processed according to the characteristics of the pattern using a Motor Insulation Monitoring System program. At this time, the processed data are total 4 types that void discharge, corona discharge, surface discharge and slot discharge. The partial discharge data with high dimensional input variables are secondarily processed by principal component analysis method and reduced with keeping the characteristics of pattern as low dimensional input variables. And therefore, the pattern classifier processing speed exhibits improved effects. In addition, in the process of extracting the partial discharge data through the MIMS program, the magnitude of amplitude is divided into the maximum value and the average value, and two pattern characteristics are set and compared and analyzed. In the first half of the proposed partial discharge pattern classifier, the input and hidden layers are classified by using the K-means clustering method and the output of the hidden layer is obtained. In the latter part, the cross entropy error function is used for parameter learning between the hidden layer and the output layer. The final output layer is output as a normalized probability value between 0 and 1 using the softmax function. The advantage of using the softmax function is that it allows access and application of multiple class problems and stochastic interpretation. First of all, there is an advantage that one output value affects the remaining output value and its accompanying learning is accelerated. Also, to solve the overfitting problem, L2-normalization is applied. To prove the superiority of the proposed pattern classifier, we compare and analyze the classification rate with conventional radial basis function neural networks.
International Journal of Advanced Culture Technology
/
제5권4호
/
pp.57-62
/
2017
In this paper, we applied long short term memory(LSTM) for classifying political polarity in cyber public sphere. The data collected from the cyber public sphere is transformed into word corpus data through word embedding. Based on this word corpus data, we train recurrent neural network (RNN) which is connected by LSTM's. Softmax function is applied at the output of the RNN. We conducted our proposed system to obtain experimental results, and we will enhance our proposed system by refining LSTM in our system.
Accident diagnosis is one of the complex tasks for nuclear power plant (NPP) operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN) has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM), which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents.
본 논문에서는 사람 얼굴의 눈, 코, 입을 효과적으로 분류하는 방법을 제안한다. 최근 대부분의 이미지 분류는 CNN(Convolutional Neural Network)을 이용한다. 그러나 CNN으로 추출한 특징은 충분하지 않아 분류 효과가 낮은 경우가 있다. 분류 효과를 더 높이기 위해 새로운 알고리즘을 제안한다. 제안하는 방법은 크게 세 부분으로 나눌 수 있다. 첫 번째는 Haar 특징추출 알고리즘을 사용하여 얼굴의 눈, 코, 입 데이터?을 구성한다. 두번째는 CNN 구조 중 하나인 AlexNet을 사용하여 이미지의 CNN 특징을 추출한다. 마지막으로 Haar 특징 추출 뒤에 합성(Convolution) 연산을 수행하여 Haar-CNN 특징을 추출한다. 그 후 CNN 특징과 Haar-CNN을 혼합하여 Softmax를 이용해 분류한다. 혼합한 특징을 사용한 인식률은 기존의 CNN 특징 보다 약 4% 향상되었다. 실험을 통해 제안하는 방법의 성능을 증명하였다.
To train deep learning algorithms, a sufficient number of data are required. However, in most engineering systems, the acquisition of fault data is difficult or sometimes not feasible, while normal data are secured. The dearth of data is one of the major challenges to developing deep learning models, and fault diagnosis in particular cannot be made in the absence of fault data. With this context, this paper proposes an anomaly detection methodology for rotating machines using only normal data with self-labeling. Since only normal data are used for anomaly detection, a self-labeling method is used to generate a new labeled dataset. The overall procedure includes the following three steps: (1) transformation of normal data to self-labeled data based on a pretext task, (2) training the convolutional neural networks (CNN), and (3) anomaly detection using defined anomaly score based on the softmax output of the trained CNN. The softmax value of the abnormal sample shows different behavior from the normal softmax values. To verify the proposed method, four case studies were conducted, on the Case Western Reserve University (CWRU) bearing dataset, IEEE PHM 2012 data challenge dataset, PHMAP 2021 data challenge dataset, and laboratory bearing testbed; and the results were compared to those of existing machine learning and deep learning methods. The results showed that the proposed algorithm could detect faults in the bearing testbed and compressor with over 99.7% accuracy. In particular, it was possible to detect not only bearing faults but also structural faults such as unbalance and belt looseness with very high accuracy. Compared with the existing GAN, the autoencoder-based anomaly detection algorithm, the proposed method showed high anomaly detection performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.