• 제목/요약/키워드: SOFTMAX

검색결과 71건 처리시간 0.024초

Voting and Ensemble Schemes Based on CNN Models for Photo-Based Gender Prediction

  • Jhang, Kyoungson
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.809-819
    • /
    • 2020
  • Gender prediction accuracy increases as convolutional neural network (CNN) architecture evolves. This paper compares voting and ensemble schemes to utilize the already trained five CNN models to further improve gender prediction accuracy. The majority voting usually requires odd-numbered models while the proposed softmax-based voting can utilize any number of models to improve accuracy. The ensemble of CNN models combined with one more fully-connected layer requires further tuning or training of the models combined. With experiments, it is observed that the voting or ensemble of CNN models leads to further improvement of gender prediction accuracy and that especially softmax-based voters always show better gender prediction accuracy than majority voters. Also, compared with softmax-based voters, ensemble models show a slightly better or similar accuracy with added training of the combined CNN models. Softmax-based voting can be a fast and efficient way to get better accuracy without further training since the selection of the top accuracy models among available CNN pre-trained models usually leads to similar accuracy to that of the corresponding ensemble models.

Softmax를 이용한 Q-learning 기반의 패킷 스케줄링 (Q-learning based packet scheduling using Softmax)

  • 김동현;이태호;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.37-38
    • /
    • 2019
  • 본 논문에서는 자원제한적인 IoT 환경에서 스케줄링 정확도 향상을 위해 Softmax를 이용한 Q-learning 기반의 패킷 스케줄링 기법을 제안한다. 기존 Q-learning의 Exploitation과 Exploration의 균형을 유지하기 위해 e-greedy 기법이 자주 사용되지만, e-greedy는 Exploration 과정에서 최악의 행동이 선택될 수도 있는 문제가 발생한다. 이러한 문제점을 해결하기 위해 본 연구에서는 Softmax를 기반으로 다중 센서 노드 환경에서 데이터 패킷에 대한 Quality of Service (QoS) requirement 정확도를 높이기 위한 연구를 진행한다. 이 때 Temperature 매개변수를 사용하는데, 이는 새로운 정책을 Explore 하기 위한 매개변수이다. 본 논문에서는 시뮬레이션을 통하여 제안된 Softmax를 이용한 Q-learning 기반의 패킷 스케줄링 기법이 기존의 e-greedy를 이용한 Q-learning 기법에 비해 스케줄링 정확도 측면에서 우수함을 보인다.

  • PDF

소프트맥스 함수 특성을 활용한 침입탐지 모델의 공격 트래픽 분류성능 향상 방안 (Improvement of Attack Traffic Classification Performance of Intrusion Detection Model Using the Characteristics of Softmax Function)

  • 김영원;이수진
    • 융합보안논문지
    • /
    • 제20권4호
    • /
    • pp.81-90
    • /
    • 2020
  • 현실 세계에서는 기존에 알려지지 않은 새로운 유형의 변종 공격이 끊임없이 등장하고 있지만, 인공신경망과 지도학습을 통해 개발된 공격 트래픽 분류모델은 학습을 실시하지 않은 새로운 유형의 공격을 제대로 탐지하지 못한다. 기존 연구들 대부분은 이러한 문제점을 간과하고 인공신경망의 구조 개선에만 집중한 결과, 다수의 새로운 공격을 정상 트래픽으로 분류하는 현상이 빈번하게 발생하여 공격 트래픽 분류성능이 심각하게 저하되었다. 한편, 다중분류 문제에서 각 클래스에 대한 분류가 정답일 확률을 결과값으로 출력하는 소프트맥스(softmax) 함수도 학습하지 않은 새로운 유형의 공격 트래픽에 대해서는 소프트맥스 점수를 제대로 산출하지 못하여 분류성능의 신뢰도 또는 정확도를 제고하는데 한계를 노출하고 있다. 이에 본 논문에서는 소프트맥스 함수의 이러한 특성을 활용하여 모델이 일정 수준 이하의 확률로 판단한 트래픽을 공격으로 분류함으로써 새로운 유형의 공격에 대한 탐지성능을 향상시키는 방안을 제안하고, 실험을 통해 효율성을 입증한다.

Softmax Loss를 이용한 Deep Hashing 모델에 대한 연구 (A Study on Deep Hashing Model Using Softmax)

  • 이기찬;김광수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.584-587
    • /
    • 2021
  • 일반적으로 얼굴인식 시스템은 영상에서 추출한 Feature와 DB 상의 Feature를 비교하는 구조를 가지고 있다. 하지만 원하는 Class의 Feature만 보고 DB 상에서 일치하는 Class의 위치를 특정하는 것은 불가능하기에 DB 상의 모든 Feature와 비교하는 절차가 필요하다. DB 크기가 커짐에 따라 처리시간과 메모리상의 문제가 발생하는데, 이 논문에서는 이를 해결하기 위한 Deep Hashing 모델을 제안한다. Softmax 기반의 Loss를 이용하여 학습하였고, 8-bits의 해시를 추출하였을 때 53%의 Feature 일치율을 보였으며, 이를 사용할 경우 DB 평균 대조군을 23% 이하로 줄이는 효과를 볼 수 있을 것으로 추정한다.

소프트맥스를 이용한 딥러닝 음악장르 자동구분 투표 시스템 (Deep Learning Music genre automatic classification voting system using Softmax)

  • 배준;김장영
    • 한국정보통신학회논문지
    • /
    • 제23권1호
    • /
    • pp.27-32
    • /
    • 2019
  • 인간이 가진 뛰어난 능력 중의 하나인 곡 분류 과정을 딥러닝 알고리즘을 통해 구현하는 연구는 단일데이터를 이용한 유니모달 모델, 멀티모달 모델, 뮤직비디오를 이용한 멀티모달 방식 등이 있다. 이 연구에서는 곡의 스펙트로그램을 짧은 샘플들로 분할하여 각각을 CNN으로 분석한 뒤 그 결과를 투표하는 시스템을 제안하여 더 좋은 결과를 얻었다. 딥러닝 알고리즘 중 CNN이 RNN에 비해 음악 장르 구분에 있어 우수한 성능을 보였으며 CNN과 RNN을 같이 적용했을 때 성능이 좋아짐을 알 수 있었다. 음악샘플을 나누어 각각의 CNN 결과를 투표하는 시스템이 이전 모델에 비해 좋은 결과를 나타내었고 이 모델에 Softmax 레이어를 추가한 모델이 가장 좋은 성능을 보였다. 디지털 미디어의 폭발적인 성장과 수많은 스트리밍 서비스 속에서 음악장르의 자동분류에 대한 필요는 점점 증가하고 있는 추세이다. 향후 연구에서는 미분류 곡의 비율을 낮추고 최종적으로 미분류된 곡들의 장르구분에 대한 알고리즘을 개발할 필요가 있을 것이다.

K-means 클러스터링 기반 소프트맥스 신경회로망 부분방전 패턴분류의 설계 : 분류기 구조의 비교연구 및 해석 (Design of Partial Discharge Pattern Classifier of Softmax Neural Networks Based on K-means Clustering : Comparative Studies and Analysis of Classifier Architecture)

  • 정병진;오성권
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.114-123
    • /
    • 2018
  • This paper concerns a design and learning method of softmax function neural networks based on K-means clustering. The partial discharge data Information is preliminarily processed through simulation using an Epoxy Mica Coupling sensor and an internal Phase Resolved Partial Discharge Analysis algorithm. The obtained information is processed according to the characteristics of the pattern using a Motor Insulation Monitoring System program. At this time, the processed data are total 4 types that void discharge, corona discharge, surface discharge and slot discharge. The partial discharge data with high dimensional input variables are secondarily processed by principal component analysis method and reduced with keeping the characteristics of pattern as low dimensional input variables. And therefore, the pattern classifier processing speed exhibits improved effects. In addition, in the process of extracting the partial discharge data through the MIMS program, the magnitude of amplitude is divided into the maximum value and the average value, and two pattern characteristics are set and compared and analyzed. In the first half of the proposed partial discharge pattern classifier, the input and hidden layers are classified by using the K-means clustering method and the output of the hidden layer is obtained. In the latter part, the cross entropy error function is used for parameter learning between the hidden layer and the output layer. The final output layer is output as a normalized probability value between 0 and 1 using the softmax function. The advantage of using the softmax function is that it allows access and application of multiple class problems and stochastic interpretation. First of all, there is an advantage that one output value affects the remaining output value and its accompanying learning is accelerated. Also, to solve the overfitting problem, L2-normalization is applied. To prove the superiority of the proposed pattern classifier, we compare and analyze the classification rate with conventional radial basis function neural networks.

Long Short Term Memory based Political Polarity Analysis in Cyber Public Sphere

  • Kang, Hyeon;Kang, Dae-Ki
    • International Journal of Advanced Culture Technology
    • /
    • 제5권4호
    • /
    • pp.57-62
    • /
    • 2017
  • In this paper, we applied long short term memory(LSTM) for classifying political polarity in cyber public sphere. The data collected from the cyber public sphere is transformed into word corpus data through word embedding. Based on this word corpus data, we train recurrent neural network (RNN) which is connected by LSTM's. Softmax function is applied at the output of the RNN. We conducted our proposed system to obtain experimental results, and we will enhance our proposed system by refining LSTM in our system.

An accident diagnosis algorithm using long short-term memory

  • Yang, Jaemin;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.582-588
    • /
    • 2018
  • Accident diagnosis is one of the complex tasks for nuclear power plant (NPP) operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN) has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM), which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents.

A Study of Facial Organs Classification System Based on Fusion of CNN Features and Haar-CNN Features

  • Hao, Biao;Lim, Hye-Youn;Kang, Dae-Seong
    • 한국정보기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.105-113
    • /
    • 2018
  • 본 논문에서는 사람 얼굴의 눈, 코, 입을 효과적으로 분류하는 방법을 제안한다. 최근 대부분의 이미지 분류는 CNN(Convolutional Neural Network)을 이용한다. 그러나 CNN으로 추출한 특징은 충분하지 않아 분류 효과가 낮은 경우가 있다. 분류 효과를 더 높이기 위해 새로운 알고리즘을 제안한다. 제안하는 방법은 크게 세 부분으로 나눌 수 있다. 첫 번째는 Haar 특징추출 알고리즘을 사용하여 얼굴의 눈, 코, 입 데이터?을 구성한다. 두번째는 CNN 구조 중 하나인 AlexNet을 사용하여 이미지의 CNN 특징을 추출한다. 마지막으로 Haar 특징 추출 뒤에 합성(Convolution) 연산을 수행하여 Haar-CNN 특징을 추출한다. 그 후 CNN 특징과 Haar-CNN을 혼합하여 Softmax를 이용해 분류한다. 혼합한 특징을 사용한 인식률은 기존의 CNN 특징 보다 약 4% 향상되었다. 실험을 통해 제안하는 방법의 성능을 증명하였다.

Normal data based rotating machine anomaly detection using CNN with self-labeling

  • Bae, Jaewoong;Jung, Wonho;Park, Yong-Hwa
    • Smart Structures and Systems
    • /
    • 제29권6호
    • /
    • pp.757-766
    • /
    • 2022
  • To train deep learning algorithms, a sufficient number of data are required. However, in most engineering systems, the acquisition of fault data is difficult or sometimes not feasible, while normal data are secured. The dearth of data is one of the major challenges to developing deep learning models, and fault diagnosis in particular cannot be made in the absence of fault data. With this context, this paper proposes an anomaly detection methodology for rotating machines using only normal data with self-labeling. Since only normal data are used for anomaly detection, a self-labeling method is used to generate a new labeled dataset. The overall procedure includes the following three steps: (1) transformation of normal data to self-labeled data based on a pretext task, (2) training the convolutional neural networks (CNN), and (3) anomaly detection using defined anomaly score based on the softmax output of the trained CNN. The softmax value of the abnormal sample shows different behavior from the normal softmax values. To verify the proposed method, four case studies were conducted, on the Case Western Reserve University (CWRU) bearing dataset, IEEE PHM 2012 data challenge dataset, PHMAP 2021 data challenge dataset, and laboratory bearing testbed; and the results were compared to those of existing machine learning and deep learning methods. The results showed that the proposed algorithm could detect faults in the bearing testbed and compressor with over 99.7% accuracy. In particular, it was possible to detect not only bearing faults but also structural faults such as unbalance and belt looseness with very high accuracy. Compared with the existing GAN, the autoencoder-based anomaly detection algorithm, the proposed method showed high anomaly detection performance.