• 제목/요약/키워드: SOCS1

검색결과 56건 처리시간 0.023초

Gene Expression Profiling in Osteoclast Precursors by Insulin Using Microarray Analysis

  • Kim, Hong Sung;Lee, Na Kyung
    • Molecules and Cells
    • /
    • 제37권11호
    • /
    • pp.827-832
    • /
    • 2014
  • The balance between bone formation by osteoblasts and destruction of mineralized bone matrix by osteoclasts is important for bone homeostasis. The increase of osteoclast differentiation by RANKL induces bone diseases such as osteoporosis. Recent studies have shown that insulin is one of main factors mediating the cross-talk between bone remodeling and energy metabolism. However, the systemic examination of insulin-induced differential gene expression profiles in osteoclasts has not been extensively studied. Here, we investigated the global effects of insulin on osteoclast precursors at the level of gene transcription by microarray analysis. The number of genes that were up-regulated by ${\geq}1.5$ fold after insulin treatment for 6 h, 12 h, or 24 h was 76, 73, and 39; and 96, 83, and 54 genes were down-regulated, respectively. The genes were classified by 20 biological processes or 24 molecular functions and the number of genes involved in 'development processes' and 'cell proliferation and differentiation' was 25 and 18, respectively, including Inhba, Socs, Plk3, Tnfsf4, and Plk1. The microarray results of these genes were verified by real-time RT-PCR analysis. We also compared the effects of insulin and RANKL on the expression of these genes. Most genes had a very similar pattern of expressions in insulin- and RANKL-treated cells. Interestingly, Tnfsf4 and Inhba genes were affected by insulin but not by RANKL. Taken together, these results suggest a potential role for insulin in osteoclast biology, thus contributing to the understanding of the pathogenesis and development of therapeutics for numerous bone and metabolic diseases.

Identification of Hub Genes in the Pathogenesis of Ischemic Stroke Based on Bioinformatics Analysis

  • Yang, Xitong;Yan, Shanquan;Wang, Pengyu;Wang, Guangming
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권5호
    • /
    • pp.697-709
    • /
    • 2022
  • Objective : The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. Methods : Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. Results : In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including human T-cell lymphotropic virus (HTLV)-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. Conclusion : Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.

NDRG2 Expression Increases Apoptosis Induced by Doxorubicin in Malignant Breast Caner Cells

  • Kim, Myung-Jin;Kang, Kyeong-Ah;Yang, Young;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • 제17권4호
    • /
    • pp.370-378
    • /
    • 2009
  • N-myc downstream-regulated gene 2 (NDRG2) has recently been found to be a tumor suppressor gene. Although it has been reported that NDRG2 expression in breast cancer cells decreases cell proliferation by inhibiting STAT3 activation via SOCS1 induction, the molecular mechanism of chemotherapeutic agent-induced apoptosis is not well known. To elucidate the effect of NDRG2 on the apoptotic pathway induced by doxorubicin, we established stable cell lines expressing NDRG2 and investigated the effect of NDRG2 expression on the doxorubicin-induced apoptosis. While STAT3 activation was remarkably inhibited by NDRG2 overexpression, the expression level of p21 was increased by NDRG2 expression. We confirmed that NDRG2-expressing cells treated with doxorubicin suppressed STAT3 activation and upregulated p21 expression. NDRG2 expression considerably enhanced TUNEL positive apoptotic cells, poly-ADP ribose polymerase (PARP) cleavage, release of cytochrome c to cytosol, and caspase-3 activity in doxorubicin-induced apoptosis. Bid expression in a resting state and after treatment with doxorubicin increased in MDA-MB-231-NDRG2 cells compared to MDA-MB-231-mock cells. Meanwhile, Bcl-$x_L$ expression decreased in MDA-MB-231-NDRG2 cells compared to MDA-MB-231-mock cells in a resting state and in doxorubicin-treated cells. Collectively, these data suggest that suppression of STAT3 activation by NDRG2 influences the sensitivity to doxorubicin-induced apoptosis of breast cancer cells and this may provide a potential therapeutic benefit to overcome the resistance against doxorubicin in breast cancer.

Trypanosoma cruzi Dysregulates piRNAs Computationally Predicted to Target IL-6 Signaling Molecules During Early Infection of Primary Human Cardiac Fibroblasts

  • Ayorinde Cooley;Kayla J. Rayford;Ashutosh Arun;Fernando Villalta;Maria F. Lima;Siddharth Pratap;Pius N. Nde
    • IMMUNE NETWORK
    • /
    • 제22권6호
    • /
    • pp.51.1-51.20
    • /
    • 2022
  • Trypanosoma cruzi, the etiological agent of Chagas disease, is an intracellular protozoan parasite, which is now present in most industrialized countries. About 40% of T. cruzi infected individuals will develop severe, incurable cardiovascular, gastrointestinal, or neurological disorders. The molecular mechanisms by which T. cruzi induces cardiopathogenesis remain to be determined. Previous studies showed that increased IL-6 expression in T. cruzi patients was associated with disease severity. IL-6 signaling was suggested to induce pro-inflammatory and pro-fibrotic responses, however, the role of this pathway during early infection remains to be elucidated. We reported that T. cruzi can dysregulate the expression of host PIWI-interacting RNAs (piRNAs) during early infection. Here, we aim to evaluate the dysregulation of IL-6 signaling and the piRNAs computationally predicted to target IL-6 molecules during early T. cruzi infection of primary human cardiac fibroblasts (PHCF). Using in silico analysis, we predict that piR_004506, piR_001356, and piR_017716 target IL6 and SOCS3 genes, respectively. We validated the piRNAs and target gene expression in T. cruzi challenged PHCF. Secreted IL-6, soluble gp-130, and sIL-6R in condition media were measured using a cytokine array and western blot analysis was used to measure pathway activation. We created a network of piRNAs, target genes, and genes within one degree of biological interaction. Our analysis revealed an inverse relationship between piRNA expression and the target transcripts during early infection, denoting the IL-6 pathway targeting piRNAs can be developed as potential therapeutics to mitigate T. cruzi cardiomyopathies.

NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization

  • Liu, Qihui;Tian, Yuan;Zhao, Xiangfeng;Jing, Haifeng;Xie, Qi;Li, Peng;Li, Dong;Yan, Dongmei;Zhu, Xun
    • Molecules and Cells
    • /
    • 제38권10호
    • /
    • pp.886-894
    • /
    • 2015
  • Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-$Gu{\acute{e}}rin$) activates disabled $na{\ddot{i}}ve$ macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). 1 The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-${\alpha}$), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-$1{\beta}$), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-${\beta}$) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions.

쥐의 초기 난포 발달에 관여하는 Cell Size Growth 및 CCN Family 유전자에 관한 연구 (Characterization of Genes Related to the Cell Size Growth and CCN Family According to the Early Folliculogenesis in the Mouse)

  • 김경화;박창은;윤세진;이경아
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제32권3호
    • /
    • pp.269-277
    • /
    • 2005
  • Objectives: Previously, we sought to compile a list of genes expressed during early folliculogenesis by using cDNA microarray to investigate follicular gene expression and changes during primordialprimary follicle transition and development of secondary follicles (Yoon et al., 2005). Among those genes, a group of genes related to the cell size growth was characterized during the ovarian development in the present study. Methods: We determined ovarian expression pattern of six genes related to the cell size growth (cyr61, emp1, fhl1, socs2, wig1 and wisp1) and extended into CCN family (${\underline{c}}onnective$ tissue growth factor/${\underline{c}}ysteine$-rich 61/${\underline{n}}ephroblastoma$-overexpressed), ctgf, nov, wisp2, wisp3, including cyr61 and wisp1 genes. Expression of mRNA and protein according to the ovarian developmental stage was evaluated by in situ hybridization, and/or semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR), and immunohistochemistry, respectively. Results: Among 6 genes related to the cell size growth, cyr61 and wisp1 mRNA was detected only in oocytes in the postnatal day5 mouse ovaries. cyr61 mRNA expression was limited to the nucleolus of oocytes, while wisp1 was expressed in the cytoplasm and nucleolus of oocytes, except nucleus. cyr61 mRNA expression, however, was found in granulosa cells from secondary follicles. The rest 4 genes in the cell size growth group were detected in oocytes, granulosa and theca cells. Cyr61 and Wisp1 proteins were expressed in the oocyte cytoplasm from primordial follicle stage. Especially, Cyr61 protein was detected in pre-granulosa cells, Wisp1 protein was not. By using RT-PCR, we evaluated and decided that Cyr61 protein is produced by their own mRNA in pre-granulosa cells that was not detected by in situ hybridization. cyr61 and wisp1 genes are happen to be the CCN family members. The other members of CCN family were also studied, but their expression was detected in oocytes, granulose and theca cells. Conclusions: We firstly characterized the ovarian expression of genes related to the cell size growth and CCN family according to the early folliculogenesis. Cyr61 protein expression in the pre-granulosa cells is profound in meaning. Further functional analysis for cyr61 in early folliculogenesis is under investigation.

RAW 264.7 대식세포에서 환원형 glutathione인 luthione의 면역 증강 활성 평가 (Evaluation of Immune Enhancing Activity of Luthione, a Reduced Glutathione, in RAW 264.7 Macrophages)

  • 지선영;권다혜;황혜진;최영현
    • 생명과학회지
    • /
    • 제33권5호
    • /
    • pp.397-405
    • /
    • 2023
  • 항산화제로서 산화적 손상의 방지에 중요한 역할을 하는 것으로 알려진 glutathione (GSH)의 면역 조절에 대한 연구는 현재까지 제대로 이루어지지 않았다. 본 연구에서 우리는 환원형 GSH인 luthione®이 RAW 264.7 세포에서 면역 강화 효과가 있는지를 조사하였다. 유세포 분석 및 면역 형광 실험의 결과에 의하면, luthione은 대조군 세포에 비해 대식세포의 대표적인 기능인 식세포 활성을 luthione 처리 농도 의적으로 증가시키는 것으로 나타났다. 또한, cytokine array의 결과에 의하면, IL-5, IL-1β와 IL-27의 발현이 luthione이 처리된 세포에서 유의하게 증가하였다. 아울러 luthione에 의한 TNF-α 및 IL-1β의 생성 증가는 그들의 단백질 발현 증가를 통해 이루어졌으며, NO 및 PGE2와 같은 면역 매개체 유리의 증가는 iNOS 및 COX-2의 발현 증가와 관련이 있었으며, 이는 M1 대식세포 분화 마커인 CD86 발현의 증가와 연관성이 있었다. 그리고 heatmap 분석을 통하여 SOCS1/3 매개 STAT/JAK 신호 전달 경로가 luthione에 의한 면역 조절 증가에 관여함을 확인하였다. 결론적으로, 우리의 결과는 luthione이 M1 macrophage polarization의 분자 조절자로 작용하여 면역 능력을 향상시킬 수 있음을 시사한다.

포용적 생활 SOC 정책 추진을 위한 공원결핍지수 개발 연구 (Development of Index of Park Derivation to Promote Inclusive Living SOC Policy)

  • 김용국
    • 한국조경학회지
    • /
    • 제47권5호
    • /
    • pp.28-40
    • /
    • 2019
  • 지역 및 인구집단의 사회경제적 지위에 따른 생활 SOC 공급의 불균형 문제를 해결하기 위해 포용도시 정책에 대한 논의가 확장하고 있다. 본 연구의 목적은 포용적 도시공원 정책 추진을 위한 대안적 지표로 공원결핍지수(Index of Park Derivation, IPD)를 제안하고, 이를 7대 광역시에 적용해 공원 정책 필요도가 상대적으로 높은 지역을 선정하는 것이다. 주요 연구결과는 다음과 같다. 첫째, 포용도시와 공원기능에 대한 관련 이론 및 선행연구 검토를 통해 포용적 도시공원 정책 개념을 "노인, 어린이, 저소득층, 폭염 미세먼지 등의 환경 재난 재해 취약계층 등 사회경제 및 환경적 지위가 낮은 지역 및 인구집단을 우선적으로 고려해 양질의 공원서비스를 공급 관리하는 정책"이라고 조작적으로 정의했다. 둘째, 공원서비스 수준, 인구구조 특성, 경제 및 교육 수준, 건강 수준, 환경적 취약성 등 5개 부문의 17개 변수를 종합하여 공원결핍지수(Index of Park Derivation, IPD)를 개발했다. 공원결핍지수를 구성하는 변수들은 체육시설, 어린이집, 유치원, 공공도서관 등 공원 외의 생활 SOC 정책에도 적용 가능할 것으로 판단된다. 셋째, 7대 광역시 1,148개 읍면동 지역에 공원결핍지수를 적용한 결과 광역시별 공원서비스 필요도가 상대적으로 높은 지역들이 도출되었다. 서울특별시 강북구 삼각산동, 부산광역시 강서구 대저1동, 대구광역시 동구 안심1동, 인천광역시 부평구 삼산1동, 광주광역시 광산구 신창동, 대전광역시 대덕구 회덕동, 울산광역시 북구 농소3동이 지역별 공원 정책필요도 1순위로 도출되었다. 본 연구는 정부 및 지자체가 쉽게 접근 활용할 수 있는 통계 및 지리정보 데이터에 기반해 포용적 도시 공원 정책을 추진할 수 있는 대안적 지표를 제안했다는 의의를 갖는다.

Genetic diversity and selection of Tibetan sheep breeds revealed by whole-genome resequencing

  • Dehong Tian;Buying Han;Xue Li;Dehui Liu;Baicheng Zhou;Chunchuan Zhao;Nan Zhang;Lei Wang;Quanbang Pei;Kai Zhao
    • Animal Bioscience
    • /
    • 제36권7호
    • /
    • pp.991-1002
    • /
    • 2023
  • Objective: This study aimed to elucidate the underlying gene regions responsible for productive, phenotypic or adaptive traits in different ecological types of Tibetan sheep and the discovery of important genes encoding valuable traits. Methods: We used whole-genome resequencing to explore the genetic relationships, phylogenetic tree, and population genetic structure analysis. In addition, we identified 28 representative Tibetan sheep single-nucleotide polymorphisms (SNPs) and genomic selective sweep regions with different traits in Tibetan sheep by fixation index (Fst) and the nucleotide diversity (θπ) ratio. Results: The genetic relationships analysis showed that each breed partitioned into its own clades and had close genetic relationships. We also identified many potential breed-specific selective sweep regions, including genes associated with hypoxic adaptability (MTOR, TRHDE, PDK1, PTPN9, TMTC2, SOX9, EPAS1, PDGFD, SOCS3, TGFBR3), coat color (MITF, MC1R, ERCC2, TCF25, ITCH, TYR, RALY, KIT), wool traits (COL4A2, ERC2, NOTCH2, ROCK1, FGF5, SOX9), and horn phenotypes (RXFP2). In particular, a horn-related gene, RXFP2, showed the four most significantly associated SNP loci (g. 29481646 A>G, g. 29469024 T>C, g. 29462010 C>T, g. 29461968 C>T) and haplotypes. Conclusion: This finding demonstrates the potential for genetic markers in future molecular breeding programs to improve selection for horn phenotypes. The results will facilitate the understanding of the genetic basis of production and adaptive unique traits in Chinese indigenous Tibetan sheep taxa and offer a reference for the molecular breeding of Tibetan sheep.

Carbon stocks and factors affecting their storage in dry Afromontane forests of Awi Zone, northwestern Ethiopia

  • Gebeyehu, Getaneh;Soromessa, Teshome;Bekele, Tesfaye;Teketay, Demel
    • Journal of Ecology and Environment
    • /
    • 제43권1호
    • /
    • pp.43-60
    • /
    • 2019
  • Background: Tropical montane forests played an important role in the provision of ecosystem services. The intense degradation and deforestation for the need of agricultural land expansion result in a significant decline of forest cover. However, the expansion of agricultural land did not completely destruct natural forests. There remain forests inaccessible for agricultural and grazing purpose. Studies on these forests remained scant, motivating to investigate biomass and soil carbon stocks. Data of biomass and soils were collected in 80 quadrats ($400m^2$) systematically in 5 forests. Biomass and disturbance gradients were determined using allometric equation and disturbance index, respectively. The regression modeling is employed to explore the spatial distribution of carbon stock along disturbance and environmental gradients. Correlation analysis is also employed to identify the relation between site factors and carbon stocks. Results: The result revealed that a total of 1655 individuals with a diameter of ${\geq}5cm$, representing 38 species, were measured in 5 forests. The mean aboveground biomass carbon stocks (AGB CS) and soil organic carbon (SOC) stocks at 5 forests were $191.6{\pm}19.7$ and $149.32{\pm}6.8Mg\;C\;ha^{-1}$, respectively. The AGB CS exhibited significant (P < 0.05) positive correlation with SOC and total nitrogen (TN) stocks, reflecting that biomass seems to be a general predictor of SOCs. AGB CS between highly and least-disturbed forests was significantly different (P < 0.05). This disturbance level equates to a decrease in AGB CS of 36.8% in the highly disturbed compared with the least-disturbed forest. In all forests, dominant species sequestrated more than 58% of carbon. The AGB CS in response to elevation and disturbance index and SOC stocks in response to soil pH attained unimodal pattern. The stand structures, such as canopy cover and basal area, had significant positive relation with AGB CS. Conclusions: Study results confirmed that carbon stocks of studied forests were comparable to carbon stocks of protected forests. The biotic, edaphic, topographic, and disturbance factors played a significant variation in carbon stocks of forests. Further study should be conducted to quantify carbon stocks of herbaceous, litter, and soil microbes to account the role of the whole forest ecosystem.