• 제목/요약/키워드: SOCS1

검색결과 56건 처리시간 0.024초

Battery Equalization Method for Parallel-connected Cells Using Dynamic Resistance Technique

  • La, Phuong-Ha;Choi, Sung-Jin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.36-38
    • /
    • 2018
  • As the battery capacity requirement increases, battery cells are connected in a parallel configuration. However, the sharing current of each battery cell becomes unequal due to the imbalance between cell's impedance which results the mismatched states of charge (SOC). The conventional fixed-resistance balancing methods have a limitation in battery equalization performance and system efficiency. This paper proposes a battery equalization method based on dynamic resistance technique, which can improve equalization performance and reduce the loss dissipation. Based on the SOC rate of parallel connected battery cells, the switches in the equalization circuit are controlled to change the equivalent series impedance of the parallel branch, which regulates the current flow to maximize SOC utilization. To verify the method, operations of 4 parallel-connected 18650 Li-ion battery cells with 3.7V-2.6Ah individually are simulated on Matlab/Simulink. The results show that the SOCs are balanced within 1% difference with less power dissipation over the conventional method.

  • PDF

A Novel Method to Measure Superior Migration of the Humeral Head: Step-off of the C-line

  • Park, Kyoung Jin;Eun, Hyeon Jun;Kim, Yong Min;Yoo, Jun Il;Lim, Chae Ouk
    • Clinics in Shoulder and Elbow
    • /
    • 제19권3호
    • /
    • pp.125-129
    • /
    • 2016
  • Background: Superior migration of humeral head has been conventionally determined by measuring the acromiohumeral distance (AHD), We sought to devise a novel measurement system more reliably and accurately than AHD. We described a structural landmark called 'C-line'. In this study, we investigated the clinical usefulness of 'step-off of the C-line (SOC)' compared to that of AHD. Methods: The C-line formed from the medial margin of the proximal humeral head continuing up to the inferior margin of the articular glenoid and then to the lateral border of the scapula. The superior migration of the humeral head triggered by a rotator cuff tear introduces a discontinuity in this C-line. We measured the distance of this discontinuity. We enrolled 144 patients who underwent a rotator cuff repair. We selected 58 controls who didn't have any cuff lesions apparent on magnetic resonance imaging. Using radiographs derived from standardized true anteroposterior views of the shoulder, we measured the SOC and the AHD. We used t-tests for statistical analyses. Results: A rotator cuff tear was associated with an increase in SOC and a decrease in AHD. In control group, the mean SOC was $1.29{\pm}1.71mm$ and AHD was $9.71{\pm}2.65mm$. In cuff tear group, the mean SOC was $3.15{\pm}3.41mm$ and AHD was $8.28{\pm}1.76mm$. The mean SOCs of the patient group in relation to the mean SOC of the control group according to tear size, the SOCs of medium tear and lager groups showed statistically significant increase (p<0.05). Conclusions: The SOC may be a similarly effective to diagnose cuff tears of medium size and larger compared with AHD.

딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법 (A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using a Deep Neural Network)

  • 아사드 칸;고영휘;최우진
    • 전력전자학회논문지
    • /
    • 제26권1호
    • /
    • pp.1-8
    • /
    • 2021
  • For the safe and reliable operation of lithium-ion batteries in electric vehicles or energy storage systems, having accurate information of the battery, such as the state of charge (SOC), is essential. Many different techniques of battery SOC estimation have been developed, such as the Kalman filter. However, when this filter is applied to multiple batteries, it has difficulty maintaining the accuracy of the estimation over all cells owing to the difference in parameter values of each cell. The difference in the parameter of each cell may increase as the operation time accumulates due to aging. In this paper, a novel deep neural network (DNN)-based SOC estimation method for multi-cell application is proposed. In the proposed method, DNN is implemented to determine the nonlinear relationships of the voltage and current at different SOCs and temperatures. In the training, the voltage and current data obtained at different temperatures during charge/discharge cycles are used. After the comprehensive training with the data obtained from the cycle test with a cell, the resulting algorithm is applied to estimate the SOC of other cells. Experimental results show that the mean absolute error of the estimation is 1.213% at 25℃ with the proposed DNN-based SOC estimation method.

Calcium permeability of transient receptor potential canonical (TRPC) 4 channels measured by TRPC4-GCaMP6s

  • Ko, Juyeon;Myeong, Jongyun;Yang, Dongki;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권1호
    • /
    • pp.133-140
    • /
    • 2017
  • Conflicting evidence has been obtained regarding whether transient receptor potential cation channels (TRPC) are store-operated channels (SOCs) or receptor-operated channels (ROCs). Moreover, the Ca/Na permeability ratio differs depending on whether the current-voltage (I-V) curve has a doubly rectifying shape or inward rectifying shape. To investigate the calcium permeability of TRPC4 channels, we attached GCaMP6s to TRPC4 and simultaneously measured the current and calcium signals. A TRPC4 specific activator, (-)-englerin A, induced both current and calcium fluorescence with the similar time course. Muscarinic receptor stimulator, carbachol, also induced both current and calcium fluorescence with the similar time course. By forming heteromers with TRPC4, TRPC1 significantly reduced the inward current with outward rectifying I-V curve, which also caused the decrease of calcium fluorescence intensity. These results suggest that GCaMP6s attached to TRPC4 can detect slight calcium changes near TRPC4 channels. Consequently, TRPC4-GCaMP6s can be a useful tool for testing the calcium permeability of TRPC4 channels.

렙틴 저항성의 개선 (Improvement of Leptin Resistance)

  • 김용운
    • Journal of Yeungnam Medical Science
    • /
    • 제30권1호
    • /
    • pp.4-9
    • /
    • 2013
  • Leptin, a 16-kDa cytokine, is secreted by adipose tissue in response to the surplus of fat store. Thereby, the brain is informed about the body's energy status. In the hypothalamus, leptin triggers specific neuronal subpopulations (e.g., POMC and NPY neurons) and activates several intracellular signaling events, including the JAK/STAT, MAPK, PI3K, and mTOR pathway, which eventually translates into decreased food intake and increased energy expenditure. Leptin signal is inhibited by a feedback inhibitory pathway mediated by SOCS3. PTP1B involves another inhibitory pathway of leptin. Leptin potently promotes fat mass loss and body weight reduction in lean subjects. However, it is not widely used in the clinical field because of leptin resistance, which is a common feature of obesity characterized by hyperleptinemia and the failure of exogenous leptin administration to provide therapeutic benefit in rodents and humans. The potential mechanisms of leptin resistance include the following: 1) increases in circulating leptin-binding proteins, 2) reduced transport of leptin across the blood-brain barrier, 3) decreased leptin receptor-B (LRB), and/or 4) the provocation of processes that diminish cellular leptin signaling (inflammation, endoplasmic reticulum stress, feedback inhibition, etc.). Thus, interference of the cellular mechanisms that attenuate leptin signaling improves leptin action in cells and animal models, suggesting the potential utility of these processes as points of therapeutic intervention. Various experimental trials and compounds that improve leptin resistance are introduced in this paper.

Effects of chlorogenic acid on intracellular calcium regulation in lysophosphatidylcholine-treated endothelial cells

  • Jung, Hye-Jin;Im, Seung-Soon;Song, Dae-Kyu;Bae, Jae-Hoon
    • BMB Reports
    • /
    • 제50권6호
    • /
    • pp.323-328
    • /
    • 2017
  • Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein (ox-LDL) and is implicated in its atherogenic activity. This study investigated the effects of LPC on cell viability, intracellular calcium homeostasis, and the protective mechanisms of chlorogenic acid (CGA) in human umbilical vein endothelial cells (HUVECs). LPC increased intracellular calcium ($[Ca^{2+}]_i$) by releasing $Ca^{2+}$ from intracellular stores and via $Ca^{2+}$ influx through store-operated channels (SOCs). LPC also increased the generation of reactive oxygen species (ROS) and decreased cell viability. The mRNA expression of Transient receptor potential canonical (TRPC) channel 1 was increased significantly by LPC treatment and suppressed by CGA. CGA inhibited LPC-induced $Ca^{2+}$ influx and ROS generation, and restored cell viability. These results suggested that CGA inhibits SOC-mediated $Ca^{2+}$ influx and ROS generation by attenuating TRPC1 expression in LPC-treated HUVECs. Therefore, CGA might protect endothelial cells against LPC injury, thereby inhibiting atherosclerosis.

고출력 18650 리튬이온 배터리의 발열인자 해석 및 실험적 검증 (Analysis and Experiment Verification of Heat Generation Factor of High Power 18650 Lithium-ion Cell)

  • 강태우;유기수;김종훈
    • 전력전자학회논문지
    • /
    • 제24권5호
    • /
    • pp.365-371
    • /
    • 2019
  • This study shows the feasibility of the parameter of the 1st RC parallel equivalent circuit as a factor of the heat generation of lithium-ion cell. The internal resistance of a lithium-ion cell consists of ohmic and polarization resistances. The internal resistances at various SOCs of the lithium-ion cell are obtained via an electrical characteristic test. The internal resistance is inversely obtained through the amount of heat generated during the experiment. By comparing the resistances obtained using the two methods, the summation of ohmic and polarization resistances is identified as the heating factor of lithium-ion battery. Finally, the amounts of heat generated from the 2C, 3C, and 4C-rate discharge experiments and the COMSOL multiphysics simulation using the summation of ohmic and polarization resistances as the heating parameter are compared. The comparison shows the feasibility of the electrical parameters of the 1st RC parallel equivalent circuit as the heating factor.

최소 자승법을 이용한 하이브리드용 리튬이온 배터리 모델링 및 특성분석 (Modeling and Characteristic Analysis of HEV Li-ion Battery Using Recursive Least Square Estimation)

  • 김호기;허상진;강구배
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.130-136
    • /
    • 2009
  • A lumped parameter model of Li-ion battery in hybrid electric vehicle(HEV) is constructed and system parameters are identified by using recursive least square estimation for different C-rates, SOCs and temperatures. The system characteristics of pole and zero in frequency domain are analyzed with the parameters obtained from different conditions. The parameterized model of Li-ion battery indicates highly dependant of temperatures. The system pole and internal resistance changes 6.6 and 18 times at $-20^{\circ}C$, comparing with those at $25^{\circ}C$, respectively. These results will be utilized on constructing model-based state observer or an on-line identification and an adaptation of the model parameters in battery management systems for hybrid electric vehicle applications.

Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

  • Zhao, Hongying;Zhang, Jun;Shao, Haiyu;Liu, Jianwen;Jin, Mengran;Chen, Jinping;Huang, Yazeng
    • Molecules and Cells
    • /
    • 제40권3호
    • /
    • pp.211-221
    • /
    • 2017
  • Transforming growth factor ${\beta}1$ $(TGF{\beta}1)/Smad4$ signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through $TGF{\beta}1/Smad4$ signaling. Here, we present that $TGF{\beta}1$ elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by $TGF{\beta}1$. The results of luciferase reporter experiments and ChIP assays demonstrated that $TGF{\beta}1$ promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the $TGF{\beta}1/Smad4$ pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the $TGF{\beta}1$-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that $TGF{\beta}1/Smad4$ signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise.

Monitoring mRNA Expression Patterns in Macrophages in Response to Two Different Strains of Probiotics

  • Sang-Pil Choi;Si-Won Park;Seok-Jin Kang;Seul Ki Lim;Min-Sung Kwon;Hak-Jong Choi; Taehoon Chun
    • 한국축산식품학회지
    • /
    • 제43권4호
    • /
    • pp.703-711
    • /
    • 2023
  • As an initial study to elucidate the molecular mechanism of how probiotics modulate macrophage activity, we monitored mRNA expression patterns in peritoneal macrophages (PMs) treated with two different strains of probiotics. After treatment with either Weissella cibaria WIKIM28 or Latilactobacillus sakei WIKIM50, total RNAs from PMs were isolated and subjected into gene chip analyses. As controls, mRNAs from vehicle (phosphate-buffered saline, PBS)-treated PMs were also subjected to gene chip analysis. Compared to vehicle (PBS)-treated PMs, WIKIM28-treated and WIKIM50-treated PMs exhibited a total of 889 and 432 differentially expressed genes with expression differences of at least 4 folds, respectively. Compared to WIKIM28-treated PMs, WIKIM50-treated PMs showed 25 up-regulated genes and 21 down-regulated genes with expression differences of more than 2 folds. Interestingly, mRNA transcripts of M2 macrophage polarization marker such as anxa1, mafb, and sepp1 were increased in WIKIM50-treated PMs comparing to those in WIKIM28-treated PMs. Reversely, mRNA transcripts of M1 macrophage polarization marker such as hdac9, ptgs2, and socs3 were decreased in WIKIM50-treated PMs comparing to those in WIKIM28-treated PMs. In agreement with these observations, mRNA expression levels of tumor necrosis factor-α and interleukin-1α were significantly reduced in WIKIM50-treated macrophages compared to those in WIKIM28-treated macrophages. These results may indicate that probiotics can be classified as two different types depending on their ability to convert macrophages into M1 or M2 polarization.