• Title/Summary/Keyword: SOC (state-of-charge)

Search Result 231, Processing Time 0.031 seconds

Estimating the State-of-Charge of Lithium-Ion Batteries Using an H-Infinity Observer with Consideration of the Hysteresis Characteristic

  • Xie, Jiale;Ma, Jiachen;Sun, Yude;Li, Zonglin
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.643-653
    • /
    • 2016
  • The conventional methods used to evaluate battery state-of-charge (SOC) cannot accommodate the chemistry nonlinearities, measurement inaccuracies and parameter perturbations involved in estimation systems. In this paper, an impedance-based equivalent circuit model has been constructed with respect to a LiFePO4 battery by approximating the electrochemical impedance spectrum (EIS) with RC circuits. The efficiencies of approximating the EIS with RC networks in different series-parallel forms are first discussed. Additionally, the typical hysteresis characteristic is modeled through an empirical approach. Subsequently, a methodology incorporating an H-infinity observer designated for open-circuit voltage (OCV) observation and a hysteresis model developed for OCV-SOC mapping is proposed. Thereafter, evaluation experiments under FUDS and UDDS test cycles are undertaken with varying temperatures and different current-sense bias. Experimental comparisons, in comparison with the EKF based method, indicate that the proposed SOC estimator is more effective and robust. Moreover, test results on a group of Li-ion batteries, from different manufacturers and of different chemistries, show that the proposed method has high generalization capability for all the three types of Li-ion batteries.

SOC and SOH Estimation Method for the Lithium Batteries Using Single Extended Kalman Filter (단일 확장 칼만 필터를 이용한 리튬배터리의 SOC 및 SOH 추정법)

  • Ko, Younghwi;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.79-81
    • /
    • 2019
  • 전기자동차(EV)뿐만 아니라 ESS(Energy Storage System) 등의 사용량이 증가하면서 리튬이온배터리의 중요성은 점점 커지고 있다. 리튬 이온 배터리의 정확한 상태를 추정하는 것은 배터리의 안전하고 신뢰성 있는 작동을 위해 매우 중요하다. 본 논문에서는 AEKF(Adaptive Extended Kalman Filter)를 이용한 배터리 파라미터와 충전상태(SOC, State of Charge)를 추정하고, 이를 활용하여 배터리의 건강상태(SOH, State of Health)를 추정하는 간단한 알고리즘을 제시한다. AEKF에 파라미터 값을 적용하여 SOC를 추정하고, 추정된 SOC값과 전류 적산을 이용하여 SOH를 추정한다. SOC 오차에 따른 SOH 추정 값의 편차는 SOC 연산 간격을 늘리고 가중치 필터를 적용하여 최소화시킴으로써 결과의 정확성을 향상했다. 다양한 자동차의 표준 주행 패턴을 적용한 실험을 통해 제안된 방법을 이용하여 얻어진 SOH 추정 결과는 RMSE(Root Mean Square Error) 1.428% 이내임을 검증하였다.

  • PDF

A Study for BMS Operation Algorithm of Electric Vehicles (전기자동차용 전지관리장치의 전지잔존량 연산알고리즘에 관한 연구)

  • Lee J.Moon;Choi Uk-Don;Lee Jong-Phil;Lee Jong-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.114-117
    • /
    • 2001
  • In the Electric Vehicle(EV) driving system, the Battery Management System(BMS) is very important and an essential equipment. Particularly, BMS monitors the State of Charge(SOC), voltage, current, and temperature of the battery modules when Electric Vehicle is in the state of motoring or charging. Major roles of BMS are like these the first, estimation of State of Charge(SOC), the second, detection of the unbalance of the voltage between battery modules, the third, control of the available limit of the voltage and temperature of batteries by monitoring the batteries status during motoring or charging. In this research, We have focused on estimating SOC of battery according to the status of Electric Vehicle and the BMS operation algorithm. The result for algorithm of SOC estimation is presented. It have been modified, compensated, and verified by means of the experiment.

  • PDF

Comparison of Learning Techniques of LSTM Network for State of Charge Estimation in Lithium-Ion Batteries (리튬 이온 배터리의 충전 상태 추정을 위한 LSTM 네트워크 학습 방법 비교)

  • Hong, Seon-Ri;Kang, Moses;Kim, Gun-Woo;Jeong, Hak-Geun;Beak, Jong-Bok;Kim, Jong-Hoon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1328-1336
    • /
    • 2019
  • To maintain the safe and optimal performance of batteries, accurate estimation of state of charge (SOC) is critical. In this paper, Long short-term memory network (LSTM) based on the artificial intelligence algorithm is applied to address the problem of the conventional coulomb-counting method. Different discharge cycles are concatenated to form the dataset for training and verification. In oder to improve the quality of input data for learning, preprocessing was performed. In addition, we compared learning ability and SOC estimation performance according to the structure of LSTM model and hyperparameter setup. The trained model was verified with a UDDS profile and achieved estimated accuracy of RMSE 0.82% and MAX 2.54%.

Accurate State of Charge Estimation of LiFePO4 Battery Based on the Unscented Kalman Filter and the Particle Filter (언센티드 칼만 필터와 파티클 필터에 기반한 리튬 인산철 배터리의 정확한 충전 상태 추정)

  • Nguyen, Thanh-Tung;Awan, Mudassir Ibrahim;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.126-127
    • /
    • 2017
  • An accurate State Of Charge (SOC) estimation of battery is the most important technique for Electric Vehicles (EVs) and Energy Storage Systems (ESSs). In this paper a new integrated Unscented Kalman Filter-Particle Filter (UKF-PF) is employed to estimate the SOC of a $LiFePO_4$ battery cell and a significant improvement is obtained as compared to the other methods. The parameters of the battery is modeled by the second order Auto Regressive eXogenous (ARX) model and estimated by using Recursive Least Square (RLS) method to calculate value of each element in the model. The proposed algorithm is established by combining a parameter identification technique using RLS method with ARX model and an SOC estimation technique using UKF-PF.

  • PDF

Novel State-of-Charge Estimation Technique of the Lead-acid Battery by Using EKF Considering Hysteresis Phenomenon (히스테리시스 현상을 고려한 확장칼만필터를 이용한 새로운 납축전지의 충전상태 추정방법)

  • Duong, Van-Huan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.317-318
    • /
    • 2013
  • State-of-Charge (SOC) is one of the most important indicators for the battery management system. Thus its precise estimation is crucial not only for effectively utilizing the energy but also preventing critical situations from happening to the powertrain of the vehicle. However, lead-acid battery is time-variant and highly nonlinear, and the hysteresis phenomenon causes large errors in estimating SOC. This paper proposes a novel SOC estimation technique for the lead-acid battery by using Extended Kalman Filter (EKF) considering hysteresis effect. The validity of the proposed technique is verified through the experiments.

  • PDF

The State of Charge Estimation of Li-Ion Battery Pack based on Screening Process (스크리닝에 기반한 배터리 팩의 SOC 추정연구)

  • Kim, J.H.;Shin, J.S.;Chun, C.Y.;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.418-419
    • /
    • 2010
  • 본 논문에서는 스크리닝에 기반한 리튬이온 배터리 팩의 state of charge (SOC) 추정방법을 연구하였다. 전기화학적 특성이 서로 유사한 셀들을 미리 선별하는 스크리닝 방법을 통해 직렬, 병렬, 직/병렬팩이 구성될 때, 이러한 팩의 전기화학적 등가회로 모델은 단위 셀 대비 일정한 경향성을 보이는 용량, open circuit voltage (OCV) 등의 파라미터 정보를 토대로 기존 단위 셀 모델과 동일한 모델 구축이 가능하다. 이를 통하여 extended kalman filter (EKF)를 이용한 배터리 팩의 SOC 추정이 가능함을 보인다.

  • PDF

Hybrid Energy System Control Strategy Considering Fuel Consumption of Diesel Generator and State of Charge(SOC) of Battery (디젤 발전기 연료소모와 배터리의 충전상태를 고려한 분산 전원 시스템에서의 운전 전략)

  • Lee, Kyungkyu;GEDEON, NIYITEGEKA;Choi, Jaeho;Song, Yujin
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.85-86
    • /
    • 2015
  • 본 논문은 디젤발전기, 태양광, 에너지 저장장치로 구성 된 마이크로 그리드 시스템에서의 효율적인 운전 제어 전략을 제안한다. BSFC(Brake Specific Fuel Consumption)맵을 기반으로 디젤발전기의 운전을 최적지점에서 일정하게 운전을 하고 부하의 변화는 에너지 저장장치의 충/방전으로 보상한다. 또한 에너지 저장장치의 안정적인 운전을 위해 에너지 저장장치의 SOC(State Of Charge)를 고려한 제어전략을 사용한다. SOC가 일정 범위를 벗어나게 되면 에너지 저장장치가 부하의 변동에 충분히 보상해주지 못하는 경우가 발생하기 때문에 이를 고려해 운전함으로써 부하에 신뢰성 있는 안정적인 전원을 공급할 수 있게 한다. 제안된 마이크로 그리드 운전 제어 전략은 PSiM 시뮬레이션을 통해 검증되었다.

  • PDF

Battery SOC and SOH Estimation Using Dual Extended Kalman Filter for Battery Management (배터리 관리를 위한 이중 확장 칼만 필터(Dual EKF)를 이용한 배터리(LiPB)의 충전 상태(SOC) 및 건강 상태(SOH) 추정)

  • Kang, Taekyu;Choi, Jaeho;Windarko, Novie Ayub
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.157-158
    • /
    • 2012
  • 본 논문은 리튬 폴리머 배터리의 수명 감소에 대한 경향성 테스트를 토대로 이중 확장 칼만 필터(Dual EKF)를 이용하여 배터리의 SOC(State-of-Charge) 및 SOH(State-of-Charge) 방법을 제안하였다. 배터리에 수명에 따른 임피던스 변화를 테스트를 수행함으로써 등가회로 모델상에서 수명에 따른 변화가 가장 큰 내부 저항을 선택함으로써 배터리의 SOH 추정을 위해 선택하였다. 배터리 모델은 4.2V, 1440mAh의 리튬폴리머 전지에서 추출되었다. 배터리는 Bulk 커패시터, 두 개의 R-C회로, 직렬 저항을 사용하여 모델링하였다. Dual EKF를 모델에 적용하기 위해 캐패시터 전압은 개방 회로 전압(OCV)을 나타내는데 사용된다. Dual EKF는 충/방전 기기인 TOSCAT-5200에 의해 얻은 실험 데이터로 테스트하였다.

  • PDF

SOC Estimation of Flooded Lead Acid Battery Using an Adaptive Unscented Kalman Filter (적응형 Unscented 칼만필터를 이용한 플러디드 납축전지의 SOC 추정)

  • Khan, Abdul Basit;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.59-60
    • /
    • 2016
  • Flooded lead acid batteries are still very popular in the industry because of their low cost as compared to their counterparts. State of Charge (SOC) estimation is of great importance for a flooded lead acid battery to ensure its safe working and to prevent it from over-charging or over-discharging. Different types of Kalman Filters are widely used for SOC estimation of batteries. The values of process and measurement noise covariance of a filter are usually calculated by trial and error method and taken as constant throughout the estimation process. While in practical cases, these values can vary as well depending upon the dynamics of the system. Therefore an Adaptive Unscented Kalman Filter (AUKF) is introduced in which the values of the process and measurement noise covariance are updated in each iteration based on the residual system error. A comparison of traditional and Adaptive Unscented Kalman Filter is presented in the paper. The results show that SOC estimation error by the proposed method is further reduced by 3 % as compared to traditional Unscented Kalman Filter.

  • PDF