• Title/Summary/Keyword: SO2 gas

Search Result 1,865, Processing Time 0.028 seconds

Beijing Natural Gas Supply and Environment Protection

  • Shaohua, Dong;Hong, Zhang
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.41-60
    • /
    • 2008
  • This paper analyses the main cause of pollution in Beijing city-the limiting of the pollution caused by coal burning has seen important progress, and natural gas is assuming an important role in China's energy strategy as the country actively seeks new and cleaner sources of energy, since 1997 to 2007, the gas supply for Beijing was given, compared with the air quality standard above II which set up by WHO(World Healthy Organization), as a result the important relationship between the environment and gas using was found, then the percent of $SO_2$, $NO_2$, PM10, CO, $O_3$ of air was shown from August $8^{th}-24^{th}$ 2006, Which it was verified that the quality of air will be perfect within the standard of WHO during the Olympic Game 2008 China.

  • PDF

Development of a Residual Gas Analyzer Calibration System (잔류기체 분석기 교정장치 개발)

  • Hong, S.S.;Lim, I.T.;Kim, J.T.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.91-98
    • /
    • 2007
  • The Korea Research Institute of Standards and Science (KRISS) has developed a residual gas analyzer (RGA) calibration system and measured gas sensitivities for two different types QMSs using nitrogen, argon, and helium. Different gas sensitivities were identified according to mass and pressure, so it was revealed that the gas sensitivity correction is necessary for proper use of mass spectrometers.

System Analysis of a Gas Generator Cycle Rocket Engine

  • Cho, Won Kook;Kim, Chun IL
    • International Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.11-16
    • /
    • 2019
  • A system analysis program has been developed for a gas generator cycle liquid rocket engine of 30 ton class. Numerical models have been proposed for a combustor, a turbopump, a gas generator and pressure drop through a regenerative cooling system. Numerical algorithm has been validated by comparing with the published data of MC-1. The major source of error is not the numerical algorithm but the imperfect performance models of subsystems. So the precision of the program can be improved by revising the performance models using experimental data. The sea level specific impulse and vacuum specific impulse have been demonstrated for a 30 ton class gas generator engine. The optimal condition of combustor pressure and mixture ratio for specific impulse which is a typical characteristic of a gas generator cycle engine has been illustrated.

Gas turbine Control using Neural-Network 2-DOF PID Controller

  • Kim, Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.61-66
    • /
    • 1998
  • Since a gas turbine is made use of generating electricity for peak time, it is a very important to operate a peak time load with safety. The main components of a gas turbine are the compressor, the combustion chamber and the turbine. So, there also must be modeled a component of gas turbines for the control with safety but it is not easy. In this paper we acquire a transfer function based on the operations data of Gun-san gas turbine and study to apply Neural-Network 2-DOF PID controler to control loop of gas turbine to reduce phenomena caused by integral and derivative actions through simulation. We obtained satisfactory results to disturbances of subcontrol loop such as, fuel flow, air flow, turbine extraction temperature.

  • PDF

Selective Chemical Vapor Deposition of $\beta$-SiC on Si Substrate Using Hexamethyldisilane/HCl/$H_2$ Gas System

  • Yang, Won-Jae;Kim, Seong-Jin;Chung, Yong-Sun;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.91-95
    • /
    • 1998
  • Selectivity of SiC deposition on a Si substrate partially covered with a masking material was investigated by introducing HCl gas into hexamethyldisilane/H2 gas system during the deposition. the schedule of the precursor and HCl gas flows was modified so that the selectivity of SiC deposition between a Si substrate and a mask material should be improved. It was confirmed that the selectivity of SiC deposition was improved by introducing HCl gas. Also, the pulse gas flow technique was effective to enhance the selectivity.

  • PDF

Effects of Lime Compounds on the Reduction of Ammonia Gas Formation and Nitrogen Loss During the Formation of Poultry Manure-Sawdust (가축분에 몇가지 석회 화합물 처리에 의한 질소손실 경감과 $NH_3$ 가스 발생 감소에 미치는 영향)

  • 박창규;양장석;조광래;원선이
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • To reduce loss of nitrogen and generation of ammonia gas during composting, poultry manure and sawdust were mixed at the equivalent ratio and calcium chloride, fused superphosphate and vermiculite were added. Ammonia and sulfurous gas during composting, and NH4-N and NO3-N contents of composts were periodically measured. With the treatments of 0.5∼3% calcium chloride and 3% fused superphosphate, ammonia and sulfurous gas during composting significantly decreased, and especially generation of gases sharply reduced and a increase of calcium chlorde. Extractable NH4-N content in composts treasted with calcium chloride and fused superphosphate were high but extractable NO3-N markedly decreased. In conclusion, the results suggest that it is necessary the additon of 1∼3% calcium chloride or 3% fused superphosphate to reduce loss of nirogen and generation of offensive odor during composting of poultry manure mixed with sawdust.

  • PDF

Review on the water-gas shift process for a coal SNG project (석탄 SNG 생산설비의 수성가스전환 공정 분석)

  • Kim, Youngdo;Shin, Yongseung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.75.1-75.1
    • /
    • 2011
  • Coal gasification is considered as one of the most prospective technologies in energy field since it can be utilized for various products such as electricity, SNG (Synthetic Natural Gas or Substitute Natural Gas) and other chemical products. Among those products from coal gasification, SNG is emerging as a very lucrative product due to the rising prices of oil and natural gas, especially in Asian countries. The process of SNG production is very similar to the conventional IGCC in that the overall process is highly dependent on the type of gasifier and coal rank. However, there are some differences between SNG production and IGCC, which is that SNG plant requires higher oxygen purity from oxygen plant and more complex gas cleanup processes including water-gas shift reaction and methanation. Water-gas shift reaction is one of the main process in SNG plant because it is a starting point for the latter gas cleanup processes. For the methanation process, syngas is required to have a composition of $H_2$/CO = 3. This study reviewed various considerations for water-gas shift process in a conceptual design on an early stage like a feasibility study for a real project. The factors that affect the design parameters of water-gas shift reaction include the coal properties, the type of gasifier, the overall thermal efficiency of the plant and so on. Water-gas shift reaction is a relatively proven technology compared to the other processes in SNG plant so that it can reduce technological variability when designing a SNG project.

  • PDF

Effect of KCl(s) and K2SO4(s) on Oxidation Characteristics of the 2.25Cr-1Mo Steel in 10%O2+10%CO2 Gas Environment at 650 ℃ (650 ℃의 10%O2+10%CO2 가스 환경에서 2.25Cr-1Mo강의 산화특성에 미치는 KCl(s)과 K2SO4(s)의 영향)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.43-50
    • /
    • 2020
  • In this study, the effects of KCl(s) and K2SO4(s) on the oxidation characteristics of 2.25Cr-1Mo steel were investigated for 500 h in 10O2 + 10CO2 (vol%) gas environmen at 650 ℃. Oxidation kinetics were characterized by weight gain, oxide layer thickness, and fitted models for the experiment data were proposed. The fitted models presented considerable agreement with the experimental data. The oxide layer was analyzed using the scanning electron microscope, optical microscope, and energy dispersive X-ray spectroscopy. The oxidation kinetics of 2.25Cr-1Mo steel with KCl and K2SO4 coatings showed significantly different oxidation kinetics. KCl accelerated the oxidation rate very much and had linear oxidation behavior. In contrast, K2SO4 had no significant effect, which had parabolic kinetics. The oxide layer was commonly composed of Fe2O3, Fe3O4, and FeCr2O4 spinel. KCl strongly accelerated the oxidation rates of 2.25Cr-1Mo steel in the high-temperature oxidation environment. Conversely, K2SO4 had little effect on the oxidation rates.

GTL(Gas-to-Liquid) 기술 현황

  • Jun, Gi-Won
    • Journal of Energy Engineering
    • /
    • v.16 no.2
    • /
    • pp.58-63
    • /
    • 2007
  • In recent years, the technologies for the production of synthetic fuel from natural gas have been attracting considerable interest because of high oil prices. While oil prices remaining high, GTL (Gas-to-Liquids) technology would provide an attractive option for utilizing gas resources. Furthermore, GTL fuels contain almost zero sulfur and low aromatics and have a very high cetane so that they are estimated to be environmentally friendly diesel fuels able of meeting the advanced fuel specifications of the 21st century. GTL process generally consists of three primary steps: synthesis gas production from natural gas reforming, hydrocarbon production from synthesis gas by Fischer-Tropsch (F-T) synthesis, product upgrading by hydrocracking/hydroisomerization. This paper presents a brief summary of GTL technology and worldwide development trend about it focusing on the reforming of natural gas and the F-T synthesis.

A Study on Influence of Fuel Cell Performance by Hydrogen Odorant (수소가스 부취제가 연료전지의 성능에 미치는 영향 연구)

  • Han, Sang-Won;Oh, Seok-Hwan;Kim, Young-Gyu;Lee, Sung-Hun;Chae, Jae-Ou
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.491-494
    • /
    • 2008
  • The hydrogen fuel and fuel cell which have high energy efficiency and low pollutant emission are getting interest as an alternative energies due to the fossil fuel exhaust, green house effect and atmospheric pollutant problems. The hydrogen gas is very effective as an alternative energy. But, if it is leaked into the air it forms the mixed gas with the air then the danger of the explosion is risen up. So, the secure the safety is mostly important. In this research, to detect the leakage of the hydrogen rapidly, added the odorant materials which don't include the sulfur component into the hydrogen gas and researched on the effect of each odorant on the performance of the fuel cell. As the results, setting the cumulation electric power on the basis and comparing the pure hydrogen, 2,3-Butanedione 5ppm mixed gas 86.1%, 5-Ethylidene-2-Norbornene 17ppm mixed gas 88.2%, Isovaleraldehyde 10ppm mixed gas 74.8%, Ethyl Isobutyrate 2.2ppm mixed gas 93.5% of performance was shown.

  • PDF