• Title/Summary/Keyword: SNiP Code

Search Result 3, Processing Time 0.022 seconds

Example of the Structural Design with Applied SNiP codes in the Commonwealth of Independent States (CIS) (CIS 국가 내진 설계 방법과 SNiP Code를 적용한 주거시설 구조설계 사례)

  • Lee, Dong-Woo;Kwak, Chul-Seung;Jeong, Hoon-Sik
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.232-237
    • /
    • 2008
  • In the Commonwealth of Independent States (CIS), the international organization, or alliance, consisting of eleven former Soviet Republics, their own regulation and standard, codes of the building are based on SNiP issued from the Russia. The SNiP for the seismicity is based on Kazakhstan codes where earthquake is very strong. After their independence, Seismic codes for Former Soviet Republics have been developed in their own accord. The building subjected by more than certain magnitude should be followed by TU as well as SNiP. In this paper, the residential complex project where seismic stability is considered from schematic design will be introduced. In this project, Local analysis program and method for arrangement of bar was applied. In the structural drawings, Korean and Local methods was compromised.

  • PDF

Modified models predicting punching capacity of edge column-slab joints considering different codes

  • Hamdy A. Elgohary;Mohamed A. El Zareef
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.363-374
    • /
    • 2024
  • Significant changes have been made to estimate the punching shear capacity for edge column-slab joints in the latest editions of most current codes. The revised equations account for axial forces as well as moments conveyed to columns from slabs, which have a substantial impact on the punching resistance of such joints. Many key design parameters, such as reinforcement-ratio, concrete strength, size-effect, and critical-section perimeter, were treated differently or even ignored in various code provisions. Consequently, wide ranges of predicted punching shear strength were detected by applying different code formulas. Therefore, it is essential to assess the various current Codes' design-equations. Because of the similarity in estimated outcomes, only the ACI, EC, and SNiP are used in this study to cover a wide range of estimation ranges from highly conservative to unconservative. This paper is devoted to analyzing the techniques in these code provisions, comparing the estimated punching resistance with available experimental data, and finally developing efficient models predicting the punching capacity of edge column-slab connections. 63 samples from past investigations were chosen for validation. To appropriately predict the punching shear, newly updated equations for ACI and SNiP are provided based on nonlinear regression analysis. The proposed equations'results match the experimental data quite well.

A Case Study on the Design of High Capacity Foundations for High-Rise Buildings (국외 초고층 건축물의 대형기초 적용 사례)

  • Cho, Sung-Han;Han, Byoung-Kwon;Lee, Je-Man;Kim, Tae-Bum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.78-89
    • /
    • 2007
  • Two design examples of deep foundations for high-rise buildings on soft ground are introduced in this paper. The first one is a 54-story building in Ho-Chi-Minh city, Vietnam, which was designed to be founded on $2.8m{\times}1.0m$ barrette foundations with approximately 60m to 75m depth. Based on a number of design guides and existing load test data from the construction sites in Ho-Chi-Minh city, the capacity of a barrette foundation in sand or clay layered ground was calculated to be 17.2MN to 27.8MN depending on the installing depth. The second one is a 40-story building in Baku city, Azerbaijan, which was designed to be supported by 2.0m diameter bored pile foundations with approximately 23m depth. As analytical or empirical guides for the local ground conditions were very limited, the design procedure from the SNiP Code, one of Russian specifications, was adopted and used to calculate the pile capacity. The capacity of bored pile foundation in highly weathered soil was expected to be 14.8MN to 15.5MN depending on the boring depth.

  • PDF