• Title/Summary/Keyword: SNS User

검색결과 446건 처리시간 0.023초

구글맵리뷰 텍스트마이닝을 활용한 공원 이용자의 인식 및 평가 - 서울숲, 보라매공원, 올림픽공원을 대상으로 - (Perception and Appraisal of Urban Park Users Using Text Mining of Google Maps Review - Cases of Seoul Forest, Boramae Park, Olympic Park -)

  • 이주경;손용훈
    • 한국조경학회지
    • /
    • 제49권4호
    • /
    • pp.15-29
    • /
    • 2021
  • 본 연구의 목적은 Google Maps에서 제공하는 장소에 대한 리뷰를 활용하여 실제로 공원을 방문한 이용자의 인식과 평가를 파악하는 것이다. 구글맵리뷰는 Social Network Service(SNS)를 통해 장소에 대한 인식과 평가에 관한 정보를 얻는 온라인 리뷰이며, 일반 리뷰어와 구글맵의 회원으로 등록된 지역 가이드의 관점에서 장소에 대한 이해를 볼 수 있는 서비스이다. 본 연구에서는 구글맵리뷰 분석이 공원 관리에 필요한 이용자들의 인식과 평가를 추출하는데 활용될 수 있는지를 살펴보고자 하였다. 서로 다른 공간특징과 시설을 가지는 3개의 공원(서울숲, 보라매공원, 올림픽공원)을 대상으로 파이썬을 활용한 웹 크롤링을 통해서 구글맵리뷰 내용을 수집하였다. 그리고 텍스트 분석을 통해 공원별 주요 키워드 분석과 네트워크 구조에 따른 특성을 분석하고, 이와 함께 구글맵리뷰에서 제공하는 별점 평갓값과 외국인 리뷰 데이터에 대한 분석도 수행했다. 연구 결과, 3개의 공원에서 공통으로 나타나는 특성으로는 이용목적으로 '산책', '자전거', '휴식', '피크닉'이 있었으며, 동반유형으로 '가족', '아이', '애견'이, 인프라로는 '놀이터', '산책로'가 있었다. 공원별 특색을 보면 서울숲은 자연을 기반으로 하는 야외활동이 많이 나타났고 반면, 주차공간 부족과 주말 혼잡은 공원 이용자에게 부정적인 영향을 미치고 있었다. 보라매공원은 수많은 활동을 제공하는 다양한 시설을 갖춘 도시공원의 모습을 가지고 있었다. 리뷰어들은 반려견을 동반하는 이용자 그룹과 그렇지 않은 다른 이용자 그룹 간의 갈등과 공원의 복잡함에 대한 부정적인 측면을 언급했다. 올림픽공원에는 대형 복합시설이 있으며, 커뮤니티, 문화예술공연과 같은 대규모 문화 이벤트가 많이 언급되었고, 레크리에이션 기능이 강조되었다. 구글맵리뷰는 공원에 대한 이용자의 전반적 경험과 이미지에 대한 특징을 파악하는 유용한 자료라고 할 수 있다. 또한, 다른 소셜미디어 데이터와 비교할 때 특히 구글맵리뷰는 공원에 대한 이용자 평갓값과 만족 및 불만족 요인을 이해할 수 있는 데이터를 제공한다.

인공지능 기술에 관한 가트너 하이프사이클의 네트워크 집단구조 특성 및 확산패턴에 관한 연구 (Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis)

  • 신선아;강주영
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.107-129
    • /
    • 2022
  • 기술경쟁이 심화되고 있는 오늘날 신기술에 대한 선도적 위치의 선점이 중요하다. 선도적 위치의 선점과 적정시점에 기술 획득·관리를 위해 이해관계자들은 지속적으로 기술에 대한 탐색활동을 수행한다. 이를 위한 참고 자료로서 가트너 하이프 사이클(Gartner Hype Cycle)은 중요한 의미가 있다. 하이프 사이클은 기술수명주기(S-curve)와 하이프 수준(Hype Level)을 결합하여 새로운 기술에 대한 대중의 기대감을 시간의 흐름에 따라 나타낸 그래프이다. 새로운 기술에 대한 기대는 기술사업화뿐만 아니라 연구개발 투자의 정당성, 투자유치를 위한 기회의 발판이 된다는 점에서 연구개발 담당자 및 기술투자자의 관심이 높다. 그러나 산업계의 높은 관심에 비해 실증분석을 시도한 선행연구는 다양하지 못하다. 선행문헌 분석결과 데이터 종류(뉴스, 논문, 주가지수, 검색 트래픽 등)나 분석방법은 한정적이었다. 이에 본 연구에서는 확산의 주요한 채널이 되어가고 있는 소셜네트워크서비스의 데이터를 활용하여 'Gartner Hype Cycle for Artificial Intelligence, 2021'의 단계별 기술들에 대한 집단구조(커뮤니티)의 특성과 커뮤니티 간 정보 확산패턴을 분석하고자 한다. 이를 위해 컴포넌트 응집규모(Component Cohesion Size)를 통해 각 단계별 구조적 특성과 연결중심화(Degree Centralization)와 밀도(Density)를 통해 확산의 방식을 확인하였다. 연구결과 기술을 수용하는 단계별 집단들의 커뮤니케이션 활동이 시간이 지날 수록 분절이 커지며 밀도 역시 감소함을 확인하였다. 또한 새로운 기술에 대한 관심을 촉발하는 혁신태동기 집단의 경우 정보확산을 촉발하는 외향연결(Out-degree) 중심화 지수가 높았으며, 이후의 단계는 정보를 수용하는 내향연결(In-degree) 중심화 지수가 높은 것으로 나타났다. 해당 연구를 통해 하이프 사이클에 관한 이론적 기초를 제공할 것이다. 또한 인공지능기술에 대한 기술관심집단들의 기대감을 반영한 정보확산의 특성과 패턴을 소셜데이터를 통해 분석함으로써 기업의 기술투자 의사결정에 새로운 시각을 제공할 것이다.

오프라인 커뮤니케이션 유무에 따른 네트워크 별 정보전달 방법 비교 분석 (A Comparative Study of Information Delivery Method in Networks According to Off-line Communication)

  • 박원국;최찬;문현실;최일영;김재경
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.131-142
    • /
    • 2011
  • 최근 페이스북, 트위터 등 다양한 소셜 네트워크 서비스(SNS)가 등장하였으며, 많은 사용자들이 SNS를 이용하고 있다. 이러한 사용자의 증가로 인해 많은 조직들은 SNS에 관심을 가지게 되었다. 조직에서 SNS의 사용은 다양한 이점을 지니고 있다. SNS를 통해 조직들은 사용자들의 행위에 신속하고 지속적으로 반응할 수 있고, 다양한 특성을 지닌 사용자에게 쉽게 접근할 수 있으며, 타 매체에 비하여 사용자 특성이 반영된 차별화된 전략을 세울 수 있다. 또한 기업들은 SNS를 통해 상대적으로 저렴한 비용으로 활용이 가능하며, 사용자들과 양방향 소통이 가능하여 친근성과 신뢰성이 있는 관계 구축이 용이하다. 그러나 네트워크의 특성에 따라 SNS의 정보전달의 효과가 다르게 나타남에도 불구하고 조직들은 네트워크의 특성을 고려하지 않고 획일화된 방법으로 SNS를 활용하여 사용자들과 커뮤니케이션하고 있다. 따라서 본 연구에서는 네트워크에 따른 SNS의 정보전달의 효과 차이를 분석하였다. 즉 오프라인에서의 커뮤니케이션 기반으로 형성된 네트워크와 무작위로 형성된 네트워크를 생성하여, 각각의 네트워크들의 특징 차이를 분석하기 위하여 소셜 네트워크 분석을 하였다. 또한, 각각의 네트워크에서 SNS를 이용한 정보 전달 효과의 차이가 있는지 실증적으로 검증하였다. 실증 분석후 네트워크의 특성에 따라 네트워크 내 사용자들은 SNS를 받아들이는 반응이 달랐다. 따라서 조직이 효과적인 마케팅 수단으로 소셜 네트워크를 활용하기 위해서는 그 목적에 따라 네트워크의 특성을 고려하여 적절한 네트워크 형태를 구성해야 함을 도출하였다.

다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구 (The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms)

  • 김정훈;김민용;권오병
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.23-45
    • /
    • 2020
  • 기업의 경쟁력 확보를 위해 판별 알고리즘을 활용한 의사결정 역량제고가 필요하다. 하지만 대부분 특정 문제영역에는 적합한 판별 알고리즘이 어떤 것인지에 대한 지식은 많지 않아 대부분 시행착오 형식으로 최적 알고리즘을 탐색한다. 즉, 데이터셋의 특성에 따라 어떠한 분류알고리즘을 채택하는 것이 적합한지를 판단하는 것은 전문성과 노력이 소요되는 과업이었다. 이는 메타특징(Meta-Feature)으로 불리는 데이터셋의 특성과 판별 알고리즘 성능과의 연관성에 대한 연구가 아직 충분히 이루어지지 않았기 때문이며, 더구나 다중 클래스(Multi-Class)의 특성을 반영하는 메타특징에 대한 연구 또한 거의 이루어진 바 없다. 이에 본 연구의 목적은 다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 유의한 영향을 미치는지에 대한 실증 분석을 하는 것이다. 이를 위해 본 연구에서는 다중 클래스 데이터셋의 메타특징을 데이터셋의 구조와 데이터셋의 복잡도라는 두 요인으로 분류하고, 그 안에서 총 7가지 대표 메타특징을 선택하였다. 또한, 본 연구에서는 기존 연구에서 사용하던 IR(Imbalanced Ratio) 대신 시장집중도 측정 지표인 허핀달-허쉬만 지수(Herfindahl-Hirschman Index, HHI)를 메타특징에 포함하였으며, 역ReLU 실루엣 점수(Reverse ReLU Silhouette Score)도 새롭게 제안하였다. UCI Machine Learning Repository에서 제공하는 복수의 벤치마크 데이터셋으로 다양한 변환 데이터셋을 생성한 후에 대표적인 여러 판별 알고리즘에 적용하여 성능 비교 및 가설 검증을 수행하였다. 그 결과 대부분의 메타특징과 판별 성능 사이의 유의한 관련성이 확인되었으며, 일부 예외적인 부분에 대한 고찰을 하였다. 본 연구의 실험 결과는 향후 메타특징에 따른 분류알고리즘 추천 시스템에 활용할 것이다.

정보이용자의 식품영양정보 이용 실태와 만족도 (A survey on the utilization practice and satisfaction of users of food and nutrition information)

  • 김인혜;박민서;배현주
    • Journal of Nutrition and Health
    • /
    • 제54권4호
    • /
    • pp.398-411
    • /
    • 2021
  • PC나 스마트폰을 활용한 정보 검색비율이 높은 20-30대 성인 남녀를 대상으로 식품영양정보 이용 실태와 만족도를 조사하여 맞춤형 식품영양정보 콘텐츠 개발을 위한 기초자료를 제공하고자 설문조사를 실시한 결과, 조사대상자 총 570명 중 남자가 45.4%, 여자가 54.6%였고, 20대가 66.3%, 30대가 33.7%였으며, 직장인이 52.3%, 학생이 41.6%, 무직이 6.1%였고, 기혼이 16.1%, 미혼이 83.9%였으며, 1인 가구가 전체의 41.4%, 가족과 함께 동거하는 경우가 58.6%였다. 매체별로 하루 평균 3시간이상 이용하는 경우는 TV가 14.2%, PC가 26.0%, 스마트폰이 63.7%였다. 식품영양정보의 검색빈도는 일주일 1회 이상이 30.9%, 일주일 1회 미만이 36.8%, 검색하지 않는 경우가 32.3%였다. 정보를 실생활에 적용한 경험이 있는 경우는 전체의 70.0%였고, 정보를 타인과 공유한다는 응답은 전체의 54.7%였으며 공유방법 (복수응답)은 구두 전달이 69.6%, SNS 이용이 64.4%였다. 정보검색 비율은 맛집 정보 (64.8%), 다이어트 (57.5%), 음식조리법 (55.7%), 식품성분 및 효능 (35.2%), 건강기능식품 (31.1%) 순으로 높았다. 식품영양정보에 대한 전체적인 만족도는 평균 3.33점/5점이었고 전체적인 만족도는 '내용 설명이 충분하고 이해하기 쉬움' (3.43점), '제목과 내용이 일치' (3.35점), '참신하고 새로운 정보 제공' (3.22점)순으로 평가점수가 높았고, '수요자와의 의사소통 가능' (2,73점) 항목이 평가점수가 가장 낮았다. 정보이용 만족도 평가점수는 정보검색을 하는 그룹 (p < 0.001), 검색한 정보를 실생활에 이용하는 그룹 (p < 0.001)과 정보를 타인에게 전달하는 그룹 (p < 0.001)에서 유의적으로 높았다. 정보이용자의 만족도 향상을 위해서는 정보이용자의 특성에 맞는 맞춤형 정보 제공이 필요하며 이를 위해서는 대상별 정보 요구도 조사와 만족도 평가가 지속적으로 수행될 필요가 있다고 판단된다.

소비자의 부정적 브랜드 루머의 수용과 확산 (Consumer's Negative Brand Rumor Acceptance and Rumor Diffusion)

  • 이원준;이한석
    • Asia Marketing Journal
    • /
    • 제14권2호
    • /
    • pp.65-96
    • /
    • 2012
  • 루머는 신뢰할 만한 타당한 근거나 이유가 없음에도 불구하고 광범위하게 이야기되는 일상적인 대화나 의견으로서 오랜기간 소비자 개개인의 사적 영역의 문제였다. 그러나 대중의 사랑과 주목을 받는 기업이나 브랜드는 선천적으로 소비자의 관심으로부터 멀어질 수 없으며, 항상 루머의 주요한 소재가 되어 왔다. 그 결과 현대의 소비자 커뮤니케이션 환경에서 루머는 기업 경영활동에 중요한 위기 요인이 되고 있다. 기업과 브랜드들이 당면하는 소비자 루머들은 크게 기업과 관련된 음모성 루머와 상품과 직접적 관련이 있는 오염성 루머로 나누어지며 국내외에서 많은 위기 사례들이 발견되고 있다. 심지어 P&G, SK, 현대, 삼성처럼 잘 정비된 홍보 조직을 갖춘 굴지의 대기업들조차 이런 루머로부터 자유롭지 못하며, 기존의 대응방식 역시 적절하지 못했던 것이 사실이다. 부정적 루머가 주목받아야 하는 이유는 해당 기업의 매출 및 점유율 하락은 물론 주식 가격에도 부정적인 영향을 미치며 오랜기간 구축해온 소비자와의 관계마저 황폐화시킬 가능성이 있기 때문이다. 최근 인터넷, 소셜 네트워크 서비스의 확산과 더불어 브랜드와 관련된 루머의 중요성은 더욱 증대하고 있으나 루머 연구는 지금까지 기업이나 마케팅 연구자의 정당한 주목을 받지 못하였다. 이에 본 연구는 루머의 다각적인 측면을 고려하는 상황주의자적 연구 패러다임을 기반으로 지각된 유용성, 원천 신뢰성, 메시지 신뢰성, 걱정, 생동감과 같은 루머와 관련된 속성들이 루머 수용강도와 루머 구전의도에 미치는 영향을 분석하였다. 이를 위하여 가상 브랜드와 루머가 제시되었으며, 실증조사를 통한 데이터 수집과 분석이 이루어졌다. 연구 결과에 따르면 원천 신뢰성, 메시지 신뢰성, 걱정, 생동감 같은 루머 특성 변수들은 루머 수용 강도에 유의한 영향을 미치고, 루머 수용강도는 루머 구전의도에 유의한 영향을 미치는 것으로 나타났다. 반면에 지각된 중요성은 루머 수용강도에 유의한 영향을 미치지 못하며, 상품 관여도의 조절효과 역시 유의하지 않은 것으로 나타났다. 본 연구는 주요한 실무적, 학문적 시사점을 제공하고 있다. 첫째, 루머를 자연발생적인 사회 현상이 아니라 소비자의 주요 활동의 일부이며, 마케터의 관심과 대응 커뮤니케이션 전략이 필요한 브랜드 관련 현상임을 주장하였다. 둘째, 브랜드 루머의 심리적, 사회적인 다차원적 구성 요인과 확산되는 경로를 제시함으로서 루머에 대한 능동적인 관리 가능성을 제시하였다. 셋째, 온라인상의 루머 활동이 기업 성과에 미치는 영향을 제시함으로서 기업들의 적극적인 온라인 커뮤니케이션 활동과 평판 관리의 필요성을 주장하였다. 넷째, 소비자의 걱정과 같은 부정적 정서가 루머의 온상이 되고 있음을 규명함으로서 소비자의 의혹을 불식시키기 위하여 정확하고 진실된 정보를 제공해야 함을 주장하였다. 다섯째, 루머의 유용성이 확산에 미치는 영향 가설이 기각되었으며, 상품 관여도의 조절 효과 역시 기각되었다. 이는 루머를 접하는 소비자의 입장에서 볼 때, 루머 자체가 무의미하더라도 단순한 재미나 호기심만으로도 얼마든지 확산될 가능성을 암시하고 있다. 일부 기업들은 사실이 아니라는 이유만으로 루머를 무시하거나 간과하는 경우들이 있으나, 기업의 예상과 다르게 루머가 얼마든지 확산될 수 있는 가능성을 보여주며, 기업의 보다 세심한 대응 전략의 필요성을 요구하고 있다.

  • PDF