• Title/Summary/Keyword: SNS Big Data

Search Result 230, Processing Time 0.021 seconds

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

Analyzing Factors of Success of Film Using Big Data : Focusing on the SNS Utilization Index and Topic Keywords of the Film (빅데이터를 활용한 영화흥행 요인 분석: 영화 <기생충>의 SNS 활용지수와 토픽키워드 중심으로)

  • Kim, Jin-Wook
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.4
    • /
    • pp.145-153
    • /
    • 2020
  • In the rapidly changing era of the fourth industry, big data is being used in various fields. In recent years, the use of big data has been rapidly applied to overall cultural and artistic contents, and among them, the use of big data is essential as a film genre with a lot of capital. This research method is analyzed as the film , which won the Palme d'Or Prize of the 72nd Cannes Film Festival in 2019 and the works and directors' award at the Academy Awards. The analyzed value predicts the film's performance through opinion mining, which gives the value of the change and sensitivity of each data cycle, and extracts the utilization index and topic keywords of SNS such as Facebook and Twitter to reflect the audience's interest. Identify the factors. As such, if model performance and model development can be predicted through model analysis of film performance using big data, the efficiency of the film production process will be maximized while the risk of production cost and the risk of film failure will be minimized.

A Topic Modeling Approach to Marketing Strategies for Smartphone Companies (소셜미디어 토픽모델링을 통한 스마트폰 마케팅 전략 수립 지원)

  • Cha, Yoon-Jeong;Lee, Jee-Hye;Choi, Jee-Eun;Kim, Hee-Woong
    • Knowledge Management Research
    • /
    • v.16 no.4
    • /
    • pp.69-87
    • /
    • 2015
  • Given the huge number of data produced by its users, SNS is a great source of customer insights. Since viral trends in SNS reflect customers' direct feedback, companies can draw out highly meaningful business insights when such data is effectively analyzed and managed. However, while the importance of understanding SNS big data keeps growing, the methods for analyzing atypical data such as SNS postings for business insights over product has not been well studied. This study aims to demonstrate the way to exploit topic modeling method to support marketing strategy generation and therefore leverage business process. First, we conducted topic modeling analysis for twitter data of Apple and Samsung smartphones. Then we comparatively examined the analysis results to draw meaningful market insights about each smartphone product. Finally, we draw out a strategic marketing recommendation for each smartphone brand based on the findings.

A Trend Analysis of Floral Products and Services Using Big Data of Social Networking Services

  • Park, Sin Young;Oh, Wook
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.5
    • /
    • pp.455-466
    • /
    • 2019
  • This study was carried out to analyze trends in floral products and services through the big data analysis of various social networking services (SNSs) and then to provide objective marketing directions for the floricultural industry. To analyze the big data of SNSs, we used four analytical methods: Cotton Trend (Social Matrix), Naver Big Data Lab, Instagram Big Data Analysis, and YouTube Big Data Analysis. The results of the big data analysis showed that SNS users paid positive attention to flower one-day classes that can satisfy their needs for direct experiences. Consumers of floral products and services had their favorite designs in mind and purchased floral products very actively. The demand for flower items such as bouquets, wreaths, flower baskets, large bouquets, orchids, flower boxes, wedding bouquets, and potted plants was very high, and cut flowers such as roses, tulips, and freesia were most popular as of June 1, 2019. By gender of consumers, females (68%) purchased more flower products through SNSs than males (32%). Consumers preferred mobile devices (90%) for online access compared to personal computers (PCs; 10%) and frequently searched flower-related words from February to May for the past three years from 2016 to 2018. In the aspect of design, they preferred natural style to formal style. In conclusion, future marketing activities in the floricultural industry need to be focused on social networks based on the results of big data analysis of popular SNSs. Florists need to provide consumers with the floricultural products and services that meet the trends and to blend them with their own sensitivity. It is also needed to select SNS media suitable for each gender and age group and to apply effective marketing methods to each target.

Functional Cosmetics Trend Analysis System Using SNS Big Data For The Girls High School Students (여고생들의 SNS 자료를 이용한 기능성 화장품 기호분석시스템)

  • Seo, Jeong Min;Song, Jeo;Lee, Chae Ri;Lee, Sang Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.99-101
    • /
    • 2013
  • 본 논문에서는 사춘기 여고생들의 기능성 화장품의 신상품 개발과 성능 향상을 위한 효율적인 정보의 분석과 생산 정책을 위한 SNS 분석시스템을 제안한다. 제안하는 시스템은 여고생들의 기능성 화장품에 관한 SNS 내용을 분석하기 위한 효율적 알고리즘과 방법론을 제안하여 시스템의 처리량을 최대화하고, 각 작업의 수행시간을 최소화한다. 또한 여고생들의 기능성 화장품에 대한 기호 상태를 파악하여, 그 분석 결과를 제품의 개발 및 생산에 반영하기 위한 비주얼 방법론을 함께 제안한다. 따라서 본 논문에서 제안하는 시스템은 단지 화장품에 대한 분석뿐만 아니라 이와 비슷한 소비자의 기호가 빠르게 변화하는 제조업 분야에서 다양하게 응용이 가능하다.

  • PDF

A Study on the Application Modeling of SNS Big-data for a Micro-Targeting using K-Means Clustering (K-평균 군집을 이용한 마이크로타겟팅을 위한 SNS 빅데이터 활용 모델링에 관한 연구)

  • Song, Jeo;Lee, Sang Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.321-324
    • /
    • 2015
  • 본 논문에서는 SNS에 존재하는 특정 제품과 브랜드 또는 기업에 대한 평가, 의견, 느낌, 사용 후기 등의 소비자 생각을 수집하여 기업에서 향후 신제품 개발이나 시장 진출 및 확대 등의 경영활동에 활용할 수 있도록 SNS 빅데이터를 문석하고, 이를 활용하여 보다 소집단화 되고 개인화 되어가는 Micro-Trend 중심의 마케팅 활동을 할 수 있는 Micro-Targeting 관련 분석 정보를 제공 모델링하는 것을 제안한다. 본 연구에서는 SNS 데이터의 수집, 저장, 분석에 대한 내용을 다루고 있으며, 특히 마이크로타겟팅을 위한 정보를 머하웃(Mahout)의 유클리드 거리 기반의 유사도와 K-평균 군집 알고리즘을 활용하여 구현하고자 하였다.

  • PDF

The Big-Data Analysis on Smartphone in SNS (스마트폰에 대한 SNS 빅데이터 분석)

  • Kim, Do-Goan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.137-139
    • /
    • 2017
  • During the last decade, the most competitive field may be smartphone industry. Among various smartphone brands, iphone of Apple and Galaxy series of Samsung have continue to keep the hot race of competition. In this point, this study attempts to analyze big data on two the two brands in SNS and to compare the major characteristics and preference of users.

  • PDF

Extracting of Interest Issues Related to Patient Medical Services for Small and Medium Hospital by SNS Big Data Text Mining and Social Networking (중소병원 환자의료서비스에 관한 관심 이슈 도출을 위한 SNS 빅 데이터 텍스트 마이닝과 사회적 연결망 적용)

  • Hwang, Sang Won
    • Korea Journal of Hospital Management
    • /
    • v.23 no.4
    • /
    • pp.26-39
    • /
    • 2018
  • Purposes: The purpose of this study is to analyze the issue of interest in patient medical service of small and medium hospitals using big data. Methods: The method of this study was implemented by data mining and social network using SNS big data. The analysis tool were extracted key keywords and analyzed correlation by using Textom, Ucinet6 and NetDraw program. Findings: In the results of frequency, the network-centered and closeness centrality analysis, It was shown that the government center is interested in the major explanations and evaluations of the technology, information, security, safety, cost and problems of small and medium hospitals, coping with infections, and actual involvement in bank settlement. And, were extracted care for disabilities such as pediatrics, dentistry, obstetrics and gynecology, dementia, nursing, the elderly, and rehabilitation. Practical Implications: Future studies will be more useful if analyzed the needs of customers for medical services in the metropolitan area and provinces may be different in the small and medium hospitals to be studied, further classification studies.

Location Inference of Twitter Users using Timeline Data (타임라인데이터를 이용한 트위터 사용자의 거주 지역 유추방법)

  • Kang, Ae Tti;Kang, Young Ok
    • Spatial Information Research
    • /
    • v.23 no.2
    • /
    • pp.69-81
    • /
    • 2015
  • If one can infer the residential area of SNS users by analyzing the SNS big data, it can be an alternative by replacing the spatial big data researches which result from the location sparsity and ecological error. In this study, we developed the way of utilizing the daily life activity pattern, which can be found from timeline data of tweet users, to infer the residential areas of tweet users. We recognized the daily life activity pattern of tweet users from user's movement pattern and the regional cognition words that users text in tweet. The models based on user's movement and text are named as the daily movement pattern model and the daily activity field model, respectively. And then we selected the variables which are going to be utilized in each model. We defined the dependent variables as 0, if the residential areas that users tweet mainly are their home location(HL) and as 1, vice versa. According to our results, performed by the discriminant analysis, the hit ratio of the two models was 67.5%, 57.5% respectively. We tested both models by using the timeline data of the stress-related tweets. As a result, we inferred the residential areas of 5,301 users out of 48,235 users and could obtain 9,606 stress-related tweets with residential area. The results shows about 44 times increase by comparing to the geo-tagged tweets counts. We think that the methodology we have used in this study can be used not only to secure more location data in the study of SNS big data, but also to link the SNS big data with regional statistics in order to analyze the regional phenomenon.

A Study on the Case Analysis of Customer Reputation based on Big Data (빅 데이터를 이용한 고객평판 사례분석에 관한 연구)

  • Song, Eun-Jee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2439-2446
    • /
    • 2013
  • Recently, SNS (Social Network Service) such as Twitter and Facebook has grown dramatically because of smart phones. Since development of IT has created massive information, social big data extremely increased. Competition between corporations is getting more intense, so they need customer feedback in order to fulfill an effective management. Because social big data plays an important role for getting customer feedback, a lot of corporations are interested in analyzing and applying of social big data. Collecting and analyzing social big data is operated by Buzz monitoring system. This paper demonstrates the research of buzz monitoring system that analyzes big data, and presents examples of customer reputation using buzz monitoring. In the paper, after all, it would analyze the result from the customer reputation, and research the implication.